Scientific Programming in High Level Language

Scientific programming is the application of programming techniques to solve scientific problems, such
as numerical analysis, data processing, simulation, and visualization. High-level languages are
programming languages that have a high level of abstraction from the details of the computer
hardware and memory, and focus more on the programming logic and usability.

Some of the advantages of using high-level languages for scientific programming are:

They are easier to learn, read, write, and debug than low-level languages.
They have built-in features and libraries that support common scientific tasks, such as matrix
operations, statistical functions, plotting, and parallel computing.

° They can interact with other languages and tools, such as calling C or Fortran functions, or
using Python or R packages.

Some of the disadvantages of using high-level languages for scientific programming are:

° They may have lower performance and efficiency than low-level languages, especially for
computationally intensive tasks.

. They may have less control and flexibility over the low-level aspects of the program, such as
memory management, data types, and optimization.

° They may have compatibility and portability issues across different platforms and
environments.

Some of the examples of high-level languages that are widely used for scientific programming are:

. Fortran: One of the oldest and most popular languages for scientific computing, especially for
numerical calculations and simulations. It has a fast execution speed and a rich set of libraries
and standards3.

. Python: A general-purpose and versatile language that has a simple and expressive syntax, and
a large and diverse collection of libraries and packages for scientific computing, such as
NumPy, SciPy, Matplotlib, Pandas, and TensorFlow.

. Julia: A relatively new and modern language that aims to combine the high-level productivity
and ease of use of Python with the high-performance and efficiency of Fortran. It has a
powerful and flexible syntax, and a built-in support for multiple dispatch, metaprogramming,
and parallel computing.

. R: A language and environment for statistical computing and graphics, that has a
comprehensive and coherent set of functions and packages for data analysis, modeling,
visualization, and machine learning.

° MATLAB: A proprietary language and platform for numerical computing and engineering, that
has a concise and intuitive syntax, and a rich set of built-in functions and toolboxes for various
domains, such as linear algebra, optimization, signal processing, and image processing.

We are free to choose any language we want as long as it serves our purpose.

High Level Language and Compiler

A high-level language and a compiler are related concepts in the field of programming. A high-level
language is a programming language that is more human-readable and abstract than the low-level
machine code that computers can execute.

A compiler is a program that translates the source code written in a high-level language into an
equivalent program in machine code or assembly language.

The main advantage of using a high-level language and a compiler is that they make the programming
process easier, faster, and more portable across different platforms. However, some drawbacks are that
they may introduce some overhead in terms of performance, memory usage, and error detection.

The main steps of compilation are:

o Lexical analysis: The compiler scans the source code and converts it into tokens, which are the
basic units of meaning in the language.

° Syntax analysis: The compiler checks the structure and grammar of the source code and builds
a parse tree that represents the logical hierarchy of the program.

. Semantic analysis: The compiler verifies the meaning and validity of the source code and
performs type checking, scope resolution, and error detection.

° Optimization: The compiler improves the performance and efficiency of the code by
eliminating redundant or unnecessary instructions, rearranging the order of execution, and
applying various techniques such as loop unrolling, constant folding, and dead code elimination.

. Code generation: The compiler produces the final output code in the target language, which
can be machine code, assembly code, or intermediate code.

Compilers can be classified into different types based on various criteria, such as:

. The source and target languages: A cross compiler translates the source code for a different
platform than the one it runs on, a bootstrap compiler translates the source code of its own
language, a source-to-source compiler translates the source code from one high-level language
to another, and a decompiler reverses the process of compilation and recovers the source code
from the executable code.

. The number of passes: A single-pass compiler processes the source code in one pass and
generates the output code directly, a multi-pass compiler processes the source code in multiple
passes and generates intermediate code in each pass, and an incremental compiler processes
the source code in small units and updates the output code accordingly.

. The time of compilation: A static compiler performs the compilation before the execution of
the program, a dynamic compiler performs the compilation during the execution of the
program, and a just-in-time compiler performs the compilation on demand at runtime.

Compilers are important for programming because they enable the use of high-level languages that are
more human-readable, portable, and expressive than low-level languages. They also enhance the speed,
security, and reliability of the programs by detecting and correcting errors, optimizing the code, and
generating efficient output code.

Compiler vs Interpreter

A compiler and an interpreter are two types of programs that convert high-level language code into
machine code that can be executed by computers. The main difference between them is how they
perform this conversion. Here are some key points to compare them:

° A compiler scans the entire source code and translates it as a whole into machine code, while
an interpreter translates one statement of the source code at a time into machine code.

. A compiler generates an executable file that can be run independently, while an interpreter
requires the source code every time the program is executed.

. A compiler usually takes more time to analyze the source code, but the execution time is faster,
while an interpreter usually takes less time to analyze the source code, but the execution time is
slower.

] A compiler can detect syntax and semantic errors before the program runs, while an interpreter
can only detect errors during the program execution.

o A compiler is more suitable for performance-oriented and platform-specific programs, while an
interpreter is more suitable for interactive and cross-platform programs.

Some examples of compiled languages are C, C++, and Java, and some examples of interpreted
languages are Python, Ruby, and JavaScript.

Character Set in C

A character set is a set of alphabets, letters, and some special characters that are valid in C language.
The C language supports a total of 256 characters, which are divided into the following categories1:

. Alphabets: These include uppercase and lowercase letters from A to Z. C accepts both
lowercase and uppercase alphabets as variables and functions2.

. Digits: These include numbers from 0 to 9. Digits are used to construct numeric values or
expressions in C programs.

° Special Characters: These include symbols suchas +, -, %, /,=,;,5().,{ L[1 .. # &L 2,,"\
N %, |, ~, <, >, _, etc. Special characters are used for various purposes, such as arithmetic
operations, assignment, punctuation, comments, escape sequences, preprocessor directives,
pointers, etc.

° White Spaces: These include blank spaces, tabs, newlines, etc. White spaces are used to
separate words and symbols in a C program. They are ignored by the compiler, except when
they are part of a string constant or a character constant.

Constants in C

Constants in C are the read-only variables whose values cannot be modified once they are declared in
the C program. Constants are also called literals. Constants can be any of the data types. It is
considered best practice to define constants using only upper-case names.

Constants are categorized into two basic types, each of which has subtypes/categories. These are:
. Primary Constants: These include integer constants, real or floating-point constants, and
character constants.

. Secondary Constants: These include array constants, string constants, structure constants,
pointer constants, and enumeration constants.

The difference between constants and literals is that constants are variables that are initialized with a
literal value and cannot be changed later, while literals are the fixed values themselves that can be
assigned to any variable. For example, in the statement int x = 10;, x is a variable, 10 is a literal, and if we
add const before int, then x becomes a constant.

Keywords in C

Keywords in C are predefined, reserved words that have special meanings to the compiler. They are part
of the syntax and cannot be used as identifiers (names of variables, functions, etc.) in the program.
There are 32 keywords in C, such as int, char, if, else, for, switch, break, continue, return, etc. Each
keyword has a specific purpose and function in the C language. For example, the int keyword is used to
declare integer variables, the if keyword is used to make conditional statements, the for keyword is
used to create loops, and so on. Here is the full list of keywords in C:

Keyword Description

auto Declares automatic variables

break Terminates the current loop or switch statement
case Labels a branch in a switch statement

char Declares character type variables

const Defines constant variables

continue Skips the current iteration of a loop

default Labels the default branch in a switch statement

do Starts a do-while loop

double Declares double-precision floating type variables
else Executes a block of code if the condition is falsee
num Declares an enumeration type

extern Declares a variable or a function with external linkage
float Declares single-precision floating type variables

for Starts a for loop

goto Jumps to a labeled statement

if Executes a block of code if the condition is true

int Declares integer type variables

long Declares long integer or double-precision floating type variables
register Declares register variablesreturnReturns a value from a function
short Declares short integer type variables

signed Declares signed integer or character type variables
sizeof Returns the size of a data type or a variable

static Declares static variables or functions

struct Declares a structure type

switch Starts a switch statement

typedef Defines a new data type name

union Declares a union type

unsigned Declares unsigned integer or character type variables
void Specifies no return type or no arguments

volatile Declares volatile variables

while Starts a while loop

Variables in C

A variable in C is a memory location with some name that helps store some form of data and retrieve it
when required. We can store different types of data in the variable and reuse the same variable for
storing some other data any number of times. They can be viewed as the names given to the memory
location so that we can refer to it without having to memorize the memory address.

To use variables in C, we need to follow some rules and syntax. Here are some important points to
remember:

. Variables in C must be declared before they can be used. The declaration specifies the type and
name of the variable.
° Variables in C can be initialized at the time of declaration or later. The initialization assigns a
value to the variable.
. Variables in C can be changed by assigning a new value to them. For example, x = 20; assigns
the value 20 to the variable x.
Declaring variables in C is the process of specifying the name and the type of the variable before using
it in the program. The syntax for declaring a variable in Cis:

data_type variable_name = value;
variable name1, variable namez;

Here, data_type is one of the C types (such as int, float, char, etc.), variable_name is the name of the
variable given by the user, and value is the value assigned to the variable by the user.

For example, to declare a variable of type int with the name x and assign it the value 10, we can write:
intx=10;
We can also declare a variable without assigning a value, and assign the value later. For example:

int x;
x=10;

To output the value of a variable in C, we need to use the printf() function with format specifiers.
Format specifiers are placeholders for the variable values and are preceded by a percentage sign %. For
example, %d for int, %f for float, and %c for char. For example, to print the value of the variable x of
type int, we can write:

printf("%d", x);

Instructions and Programs

The difference between instruction and program in C is that instruction is a single operation that the
processor can execute, while program is a collection of instructions that perform a specific task.

° Instruction: An instruction is a set of binary code that tells the processor what to do, such as
move data, perform arithmetic, or control the flow of execution. Instructions are the basic
building blocks of a program. Each instruction has an opcode (operation code) that specifies
the type of operation, and one or more operands that specify the data or addresses involved in
the operation. For example, ADD R1, R2 is an instruction that adds the contents of register R1
and R2 and stores the result in R1. Instructions are executed by the processor one by one in a
sequential order, unless there is a jump or branch instruction that changes the order.
Instructions are also known as machine code, because they are directly understood by the
processor.

o Program: A program is a sequence of instructions that perform a specific task or solve a
problem. Programs are written by programmers using programming languages, such as C, that
are easier to read and write than binary code. Programs are stored in the main memory or
secondary storage devices, such as hard disks. Programs need to be translated into machine
code before they can be executed by the processor. This translation can be done by compilers,
interpreters, or assemblers. Programs are also known as software applications, because they
provide some functionality to the user or the system. For example, a web browser, a word
processor, or a game are programs that run on a computer.

Operators in C

Operators in C are symbols that represent operations to be performed on one or more operands.
Operands are the values or variables on which the operators act. For example, in the expressiona + b, a
and b are the operands and + is the operator.

There are different types of operators in C, depending on their functionality and the number of
operands they require. Some of the common types of operators are:

o Arithmetic operators: These operators are used to perform mathematical operations such as
addition, subtraction, multiplication, division, and modulus. They can be either unary (one
operand) or binary (two operands). For example, +, -, ¥, /, %, ++, and --.

o Relational operators: These operators are used to compare the values of two operands and
return a Boolean value (true or false) based on the result of the comparison. They can be only
binary (two operands). For example, ==, I=, <, >, <=, and >=.

® Logical operators: These operators are used to combine the results of two or more relational
expressions and return a Boolean value (true or false) based on the logical rules. They can be
only binary (two operands). For example, && (logical AND), || (logical OR), and ! (logical NOT).

® Bitwise operators: These operators are used to manipulate the individual bits of an operand and
perform bitwise operations such as AND, OR, XOR, NOT, shift, and rotate. They can be either
unary (one operand) or binary (two operands). For example, &, |, #, ~, <<, and >>,

o Assignment operators: These operators are used to assign a value to a variable or modify the
value of a variable by performing some operation. They can be either unary (one operand) or
binary (two operands). For example, =, +=, -=, *=, /=, and %-=.

B Conditional operator: This operator is used to evaluate a condition and return one of the two
values based on whether the condition is true or false. It is also known as the ternary operator
because it requires three operands. The syntax is condition ? value_if_true : value_if_false. For
example, x = (a > b) ? a: b; assigns the larger of a and b to x.

» Comma operator: This operator is used to separate two or more expressions and evaluate them
from left to right. The value of the last expression is returned as the result. For example, x = (y =
10, y + 5); assigns 10 to y and 15 to x.

@ Sizeof operator: This operator is used to return the size of an operand in bytes. It can be either
unary (one operand) or binary (two operands). For example, sizeof(int) returns the size of an int
type, which is usually 4 bytes.

Expressions in C

An expression in C is a combination of constants, variables, operators, and functions that evaluates to a
single value. Expressions can be used to perform calculations, assign values, compare values, or control
the flow of the program. For example, x + y * 2 is an expression that adds the value of x to the product

of y and 2.

There are different types of expressions in C, depending on the type of operands and operators
involved. Some of the common types of expressions are:

o Arithmetic expressions: These expressions use arithmetic operators, such as +, -, ¥, /, and %, to
perform mathematical operations on numeric operands. For example, a + b / c is an arithmetic
expression that divides b by ¢ and adds the result to a.

° Relational expressions: These expressions use relational operators, such as ==, !=, <, >, <=, and
>=, to compare the values of two operands and return a Boolean value (0 or 1) based on the
result of the comparison. For example, x ==y is a relational expression that returns 1if x and y
are equal, and 0 otherwise.

o Logical expressions: These expressions use logical operators, such as &&, ||, and !, to combine
the results of two or more relational expressions and return a Boolean value (0 or 1) based on
the logical rules. For example, x > 0 && y < 0 is a logical expression that returns 1 if x is positive
and y is negative, and 0 otherwise.

o Bitwise expressions: These expressions use bitwise operators, such as &, |, #, ~, <<, and >>, to
manipulate the individual bits of an operand and perform bitwise operations, such as AND, OR,
XOR, NOT, shift, and rotate. For example, x & y is a bitwise expression that performs a bitwise
AND operation on x and y.

® Assignment expressions: These expressions use assignment operators, such as =, +=, -=, *=, /=,
and %-=, to assign a value to a variable or modify the value of a variable by performing some
operation. For example, x += 5 is an assignment expression that adds 5 to x and assigns the
result back to x.

. Conditional expressions: These expressions use the conditional operator, also known as the
ternary operator, which has the syntax condition ? value_if_true : value_if_false, to evaluate a
condition and return one of the two values based on whether the condition is true or false. For
example, x >y ? x : y is a conditional expression that returns the larger of x and y.

o Comma expressions: These expressions use the comma operator, which has the syntax
expressionT, expression2, to separate two or more expressions and evaluate them from left to
right. The value of the last expression is returned as the result. For example, x = 10,y =20is a
comma expression that assigns 10 to x and 20 to y, and returns 20 as the result.

Input output statements in C

Input and output statements in C are used to communicate with the user or other devices through the
standard input and output streams. The standard input stream is usually the keyboard, and the standard
output stream is usually the screen.

There are several functions in C that can perform input and output operations, such as printf(), scanf(),
getchar(), putchar(), gets(), and puts(). These functions are defined in the header file stdio.h, which
stands for standard input output header.

The printf() function is used to display formatted output on the screen. It takes a format string as the
first argument, which can contain text, escape sequences, and format specifiers. Format specifiers are
placeholders for the values of the variables that are passed as the subsequent arguments. For example,
%d is the format specifier for integers, %f is for floats, and %c is for characters. The printf() function
replaces the format specifiers with the corresponding values and prints the result on the screen. For
example:

#include <stdio.h>

int main()

{

intx=10;

floaty = 3.14;

charz="A}

printf("x = %d, y = %f, z = %c\n", x, y, z);
return O;

}

This program will output:
x=10,y=3.140000,z=A

The scanf() function is used to take formatted input from the keyboard. It takes a format string as the
first argument, which specifies the type and number of values to be read. The subsequent arguments
are the addresses of the variables where the input values will be stored. The addresses are obtained by
using the & operator, which is also known as the address-of operator. The scanf() function reads the
input from the keyboard, converts it to the specified type, and stores it in the corresponding variables.
For example:

#include <stdio.h>

int main()

{

int x;

floaty;

char z;

printf("Enter an integer, a float, and a character: ");
scanf("%d %f %c", &x, &y, &z);

printf("You entered: x = %d, y = %f, z = %c\n", x, y, z);
return O;

}

This program will prompt the user to enter an integer, a float, and a character, separated by spaces. For
example, if the user enters:

5
2.5
B

The program will output:
You entered: x =5, y = 2.500000,z = B

The getchar() function is used to read a single character from the standard input stream. It returns the
ASCII value of the character, or EOF if the end of the file is reached. The putchar() function is used to
write a single character to the standard output stream. It takes the ASCII value of the character as the
argument, and returns the same value, or EOF if an error occurs. For example:

#include <stdio.h>

int main() {

char c;

printf("Enter a character: ");
c = getchar();

printf("You entered: ");
putchar(c);

printf("\n");

return O;

}

This program will prompt the user to enter a character, and then display the same character. For
example, if the user enters:

X
The program will output:
You entered: X

The gets() function is used to read a string from the standard input stream. It takes a character array as
the argument, and reads the input until a newline character (\n) or the end of the file is encountered. It
stores the input in the character array, and appends a null character (\0) at the end. The puts() function
is used to write a string to the standard output stream. It takes a character array as the argument, and
writes the string until a null character (\0) is encountered. It also appends a newline character (\n) at
the end. For example:

#include <stdio.h>

int main() {

char str[50];
printf("Enter a word: ");
gets(str);

printf("You entered: ");
puts(str);

return O;

}

This program will prompt the user to enter a word, and then display the same word. For example, if the
user enters:

Hello
The program will output:

You entered: Hello

Executable and Non-executable statements in C

Executable and non-executable statements in C are the two categories of statements that can appear in
a C program. Executable statements are those that specify the actions to be performed during the
execution of the program, such as calculations, assignments, input/output, or control flow. Non-
executable statements are those that do not specify any actions to be performed during the execution,
but rather provide information to the compiler, such as declarations, definitions, preprocessor
directives, or comments.

For example, consider the following C program:

#include <stdio.h> // non-executable statement
#define Pl 3.14 // non-executable statement
int main() // non-executable statement
{
intr =5; // non-executable statement
float area; // non-executable statement
area = Pl * r * r; // executable statement
printf("The area of the circle is %f\n", area); // executable statement
return 0; // executable statement

In this program, the statements that start with # are preprocessor directives, which are processed by
the preprocessor before the compilation. They are non-executable statements, as they do not affect
the runtime behavior of the program.

The statements that declare or define variables, such as int r = 5; or float area;, are also non-executable
statements, as they only tell the compiler the type and name of the variables, and optionally assign
some initial values.

The statements that perform some operations on the variables, such as area = Pl * r * r; or printf("The
area of the circle is %f\n", area);, are executable statements, as they are translated into machine code
and executed by the processor. The statement return 0; is also an executable statement, as it
terminates the main function and returns a value to the operating system.

Control Statements

Control statements are used to control the flow of execution of a program. They allow us to make
decisions, perform tasks repeatedly, or jump from one section of code to another. There are four types
of control statements in C:

. Decision making statements: These statements are used to execute a block of code based on a
condition. The condition can be either true or false. The decision making statements in C are if,
if-else, and nested if-else.

e Selection statements: These statements are used to select one of the multiple choices based
on a value or an expression. The selection statements in C are switch and case.

. Iteration statements: These statements are used to execute a block of code repeatedly until a
condition is satisfied. The iteration statements in C are for, while, and do-while.

° Jump statements: These statements are used to transfer the control of the program to another
section of code. The jump statements in C are break, continue, and goto.

Loops in C

For Loop
Syntax ‘*
for(Expression 1; Expression 2; Expression 3)

{

//code to be executed
} False
True

e

While Loop
Syntax
while(condition)

{

//code to be executed

}

Do While Loop
Syntax
do {

//code to be executed
}while(condition);

True

do

Questions:

1. What are high level programming languages?

2. What are the advantages of high level programming language?

3. What are the disadvantages of high level programming languages?
4. Name some high level programming languages used in scientific computing.
5. What are compilers?

6. What are interpreters?

7. Write the differences between compilers and interpreters.

8. Name some compiled languages. Name some interpreted languages.
9. What are C constants?

10. What are C characters?

11. What are C keywords?

12. What are C variables?

13. What is variable declaration?

14. What is variable initialization?

15. Write a note on Operators in C mentioning each type and examples.
16. What are the four types of control statements in C?

17. Write the syntax and flowchart of three types of loops in C?

