Matrix Algebra and Index Notation

Matrix algebra is a branch of mathematics that deals with operations on matrices, such as addition,
multiplication, inversion, and determinant. Index notation is a convenient way to write the elements and
operations of matrices using subscripts.

. A matrix is a rectangular array of numbers arranged in rows and columns. The size of a matrix is
given by the number of rows and columns, denoted by m and n respectively. A matrix with m
rows and n columns is called an m-by-n matrix, and written as

A oy ac [Al mxn

] Each element in a matrix can be referenced by its index location, which is given by two
numbers: the row number and the column number. For example, the element in the i-th row
and j-th column of matrix A is denoted by

ﬂy o AD

The indices i and j usually range from 1 to m and 1 to n respectively, unless otherwise specified.

. A vector is a special case of a matrix that has only one column or one row. A vector with n
elements is called an n-dimensional vector, and written as

Vi

A vector can be written as a column matrix or a row matrix, depending on the context. For example, the
vector V’b can be written as

L ] y
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. The element in the i-th position of vector vis denoted by Vi O \/[



Matrix addition is an operation that adds two matrices of the same size element-wise. That is, the sum
of two matrices A and B is a matrix C such that

for all i and j. Matrix addition is commutative and associative, meaning that

At = B+ A

and
(A+2)1C = A+ (B+C)
for any matrices A, B, and C of the same size.

Identity matrix exists for the addition of matrices, i.e. if A and B are two matrices of the same
dimensionality, such that

A+ 2 =A

then B is the identity matrix for the addition operation. Here B is the null matrix, ‘By =)



A scalar is a single number that can be multiplied with a matrix or a vector. Scalar multiplication is an
operation that multiplies each element of a matrix or a vector by a scalar. For example, if atis a scalar
and A is a matrix, then oA is a matrix such that

(o= 2R
J
for all i and j. Scalar multiplication is commutative and associative, meaning that
o ( BA) = (0p)A
and

a(pr)= (AP

for any scalars acand B and any matrix A. Scalar multiplication is also distributive over matrix addition,
meaning that

O{(_A+B) = WA+ 0B

for any scalar a and any matrices A and B of the same size.



Matrix multiplication is an operation that combines two matrices A and B to produce a matrix C such
that n |
C Nz — A' ] 3 .
i Zg, KT

for all i and j, where n is the number of columns of A and the humber of rows of B.
Matrix multiplication is not commutative, meaning that

AG # BA
in general, but it is associative, meaning that
(AB)C = A(BO)

for any matrices A, B, and C that can be multiplied. Matrix multiplication is also distributive over matrix
addition, meaning that

1

AB + AC

A (Bt c)

and
(A+B)C = AC +BC

for any matrices A, B, and C that can be added and multiplied.



A square matrix is a matrix that has the same number of rows and columns, denoted by n.

A mxo

A square matrix A is called diagonal if A-]. = (D foralliandjsuch thati#j.

A diagonal matrix can be written as
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, where a;; are the diagonal elements.

A diagonal matrix is called identity if A'ﬁ =1 for all i and j such that i=j, and 0 otherwise

An identity matrix, denoted by |, can be written as

"4 o o -}- 0]
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An identity matrix has the property that

AL=A  amd JA=A

for any matrix A of the same size.



The trace of a matrix is defined as the sum of the principal diagonal elements of a square matrix. It is
usually represented as tr(A), where A is any square matrix of order “n x n.” For example, if

A= |12 In Wdec wotation, Ar(A)= a, + A, rap+ ..

3| 4 d
B gL

then tr(A)=1+4=5. : fi
=

)

The trace of a matrix has some important properties, such as:
. The trace of a matrix is equal to the sum of its eigenvalues (counted with multiplicities).

. The trace of a matrix is invariant under similarity transformations, that is, if A and B are similar
matrices, then tr(A) = tr(B).

° The trace of a matrix is equal to the trace of its transpose, that is, tr(A) = tr(A").

. The trace of a matrix is linear with respect to matrix addition and scalar multiplication, that is,
tr(A + B) = tr(A) + tr(B) and tr(kA) = k tr(A), where k is any scalar.

° The trace of a matrix is cyclic with respect to matrix multiplication, that is, tr(AB) = tr(BA) for
any matrices A and B such that AB and BA are defined.

t(Aec) = 4r(BcA) = 4 (CAB)
Some examples of matrices and their traces are:
. The trace of an identity matrix of order “n x n" is n, that is, tr(ln) =n.

° The trace of a zero or null matrix of any order is zero, that is, tr(O) = 0.



An idempotent matrix is a square matrix that does not change when multiplied by itself. In other words,
if A is an idempotent matrix, then A%= A. For example, the identity matrix | is idempotent, since 1221,
Idempotent matrices have some interesting properties, such as:

° Their eigenvalues are either 0 or 1.

o Their determinant is either O or 1.

. Their trace is equal to their rank.

. They are always diagonalizable.



A nilpotent matrix is a square matrix that becomes zero when raised to some positive integer power. In
other words, if A is a nilpotent matrix, then there exists a positive integer k such that A%k = 0. For
example, the matrix

% ol <

0 1
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is nilpotent, since A"3 = 0. k is called the index. Nilpotent matrices have some interesting properties,
such as:

. Their determinant is always zero.
° Their trace is always zero.
o Their eigenvalues are always zero.

° They are not invertible, unless they are the zero matrix.



An involutory matrix is a square matrix that is its own inverse, meaning that multiplying it by itself gives
the identity matrix of the same order. For example, the matrix

0 |
{ o
Is an involutory matrix, because
o {]lo! 10

Lol ilo D Ll

Some properties of involutory matrices are:
. The determinant of an involutory matrix is always either +1 or -1.
. The eigenvalues of an involutory matrix are always either +1 or -1.

o A symmetric involutory matrix is orthogonal, and vice versa.



A symmetric matrix is a square matrix that is equal to its transpose, meaning that the elements on the
opposite sides of the main diagonal are the same. For example, the matrix

112 |3

245
256

is a symmetric matrix, because it is equal to its transpose, which is

HE NERLLE
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Some of the properties of symmetric matrices are:
. The sum and difference of two symmetric matrices are also symmetric.

o The product of two symmetric matrices is symmetric if and only if they commute, that s, if AB
= BA.

. The determinant of a symmetric matrix is equal to the determinant of its transpose, and it is
always a real number.

° The inverse of a symmetric matrix is also symmetric, if it exists.

. The eigenvalues of a symmetric matrix are always real, and its eigenvectors are orthogonal and
real.

Symmetric matrices have many applications in mathematics, physics, engineering, and computer

science. For example, they can be used to represent covariance matrices, quadratic forms, inner
products, orthogonal transformations, and more.



A skew-symmetric matrix is a square matrix that is equal to the negative of its transpose. In other
words, if A is a skew-symmetric matrix, then AAT = -A. This means that the elements on the opposite
sides of the main diagonal are the opposite of each other, and the elements on the main diagonal are all
zero. For example, the matrix

=

-
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Is a skew-symmetric matrix, because
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Some of the properties of skew-symmetric matrices are:
. The sum and difference of two skew-symmetric matrices are also skew-symmetric.

° The product of two skew-symmetric matrices is symmetric if and only if they commute, that is,
if AB = BA.

. The determinant of a skew-symmetric matrix is always zero if the order of the matrix is odd,
and always a non-positive perfect square if the order of the matrix is even.

. The inverse of a skew-symmetric matrix is also skew-symmetric, if it exists.

. The eigenvalues of a skew-symmetric matrix are always either zero or purely imaginary, and its
eigenvectors are orthogonal and complex.

Skew-symmetric matrices have many applications in mathematics, physics, engineering, and computer
science. For example, they can be used to represent cross products, angular velocities, antisymmetric
tensors, exterior derivatives, and more.



A herm{}tian matrix is a square matrix that is equal to its conjugate transpose, that is, a matrix A such
that A=A, where AY is the matrix obtained by taking the complex conjugate of each element and
then transposing the matrix. A hermitian matrix has some important properties, such as:

. The diagonal elements of a hermitian matrix are always real numbers.

e The eigenvalues of a hermitian matrix are always real numbers, and the eigenvectors
corresponding to distinct eigenvalues are orthogonal.

. A hermitian matrix can be diagonalized by a unitary matrix, that is, there exists a matrix U
such that, U*A U=D where D is a diagonal matrix with the eigenvalues of A on the diagonal.

° The determinant, trace, and inverse of a hermitian matrix are also real numbers.

° The sum and product of two hermitian matrices are hermitian if and only if they commute, that

is, AB=BA.
Some examples of hermitian matrices are: . ps
4 -1 0
° A i i Iz
ny real symmetric matrix, such as or
213 - 2.1
T o || |3
° Any complex matrix with real diagonal elements and conjugate symmetric off-diagonal
elements, such as 02 Q#T __1

I Q| 4 | a-i
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A skew-hermitian matrix is a square matrix of complex numbers that is equal to the negative of its
conjugate transpose. That is, if A is a skew-hermitian matrix, then A= -A, where A'is the matrix
obtained by taking the complex conjugate of each element and then transposing the matrix. A skew-
hermitian matrix has some properties opposite to those of hermitian matrices, such as:

. The diagonal elements of a skew-hermitian matrix are always zero or purely imaginary numbers.

e The eigenvalues of a skew-hermitian matrix are always purely imaginary numbers, and the
eigenvectors corresponding to distinct eigenvalues are orthogonal.

. A skew-hermitian matrix can be diagonalized by a unitary matrix, that is, there exists a matrix U
such that U'AU=D, where D is a diagonal matrix with the eigenvalues of A on the diagonal.

. The determinant, trace, of a skew-hermitian matrix are also purely imaginary numbers.

° The sum and product of two skew-hermitian matrices are skew-hermitian if and only if they
commute, that is, AB=BA.

Some examples of skew-hermitian matrices are:

O vl f+1 2 B+4 B | 1
=3 0 2 —3-4r =20 -1 | ©
~1-L |~& O L]

Skew-hermitian matrices can be used to represent the Lie algebra of the unitary group, which is
important in quantum mechanics and differential geometry.
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An orthogonal matrix is a square matrix whose transpose is equal to its inverse, meaning that
multiplying it by itself gives the identity matrix of the same order. For example, the matrix

0 |
=D

is an orthogonal matrix, because

i g I Hlol A=l 149
= I 0 O O

)

Some properties of orthogonal matrices are:
° The determinant of an orthogonal matrix is always either +1 or -1.

o The eigenvalues of an orthogonal matrix are always either +1 or -1, and its eigenvectors are
orthogonal and real.

. An orthogonal matrix is symmetric if and only if it is diagonal.

. An orthogonal matrix is orthogonal, and vice versa.
Orthogonal matrices have many applications in mathematics, physics, engineering, and computer
science. For example, they can be used to represent rotations, reflections, and orthogonal

transformations. They also preserve the length and angle of vectors, which makes them useful for
solving linear equations and optimization problems.
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A unitary matrix is a square matrix whose entries are complex numbers.

It possesses a remarkable property: when multiplied by its conjugate transpose, it equals the identity
matrix.

In other words, if U is a unitary matrix, then either of the following conditions holds:
+ ~( ¥ ,
U= U (where(U)is the conjugate transpose of L1 ).
.r
( U*U 2] UJU), where T represents the identity matrix.
Properties:

Preservation of Norms: Unitary matrices play a crucial role in quantum mechanics because they
preserve norms. This preservation ensures that probability amplitudes remain consistent.

Diagonalizability: Every unitary matrix is diagonalizable. This implies that it can be transformed into a
diagonal matrix through a unitary similarity transformation.

Determinant: The determinant of a unitary matrix has a modulus of 1. In other words, (|det(U)| = 1),
placing it on the unit circle in the complex plane.

Orthogonality: The eigenspaces of a unitary matrix are orthogonal.
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DAGONAUZATION OF MATRIX A .
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