Unit IV - Dynamics of Rigid Bodies

The dynamics of a rigid body deals with the study of the motion of an object that maintains its shape
and does not deform under the influence of external forces. Unlike a system of particles, which can have
individual particles with different positions and velocities, a rigid body is a single object with a fixed
configuration. The dynamics of a rigid body is a fundamental topic in mechanics and has numerous
applications in engineering, robotics, aerospace, and other fields. It provides a framework for analyzing
the motion, stability, and behaviour of objects that can be approximated as rigid bodies.

The dynamics of a rigid body is governed by Newton's laws of motion, similar to the dynamics of
particles. Newton's laws can be extended to describe the translational and rotational motion of a rigid
body. They relate the net force and net torque acting on a rigid body to its linear acceleration and
angular acceleration, respectively. Dynamics of a rigid body involves the analysis of moments and
torques. A moment is a measure of the tendency of a force to cause rotation about a particular axis.
Torque is the rotational equivalent of force and is responsible for producing angular acceleration in a
rigid body.

A rigid body can undergo translational motion, where the entire body moves in a straight line without
any rotation. In this case, all points of the rigid body have the same velocity and follow parallel paths. A
rigid body can also undergo rotational motion, where it spins about a fixed axis. Each point of the body
moves in a circular path centred on the axis of rotation. The motion of a rotating rigid body can be
described in terms of angular displacement, angular velocity, and angular acceleration. In general, a rigid
body can undergo both translation and rotation simultaneously. This combined motion is known as
general motion. It involves a combination of linear motion of the centre of mass and rotational motion
about an axis passing through the centre of mass. The moment of inertia quantifies the resistance of a
rigid body to rotational motion. It depends on the distribution of mass within the body relative to the
axis of rotation. The larger the moment of inertia, the greater the resistance to changes in rotational
motion. Conservation laws, such as the conservation of linear momentum and the conservation of
angular momentum, play a crucial role in the dynamics of a rigid body.
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Rigid body motion — Translational and Rotational motion

A rigid body is defined as a solid body in which the particles are compactly arranged so that the inter-
particle distance is small and fixed and is not disturbed by any external forces applied. Such a body thus
preserves its shape or configuration intact and does not bend, stretch or vibrate when in motion.

A rigid body may either move bodily, i.e., as a whole, in any direction, or it may rotate in two or three
dimensions. In the former case, it is said to execute a translatory motion and in the latter, a rotational
motion. A body may also execute both translational and rotational motions simultaneously. We can
imagine the translational motion of a rigid body to be that of one single point, i.e., its centre of mass,
where the whole mass of the body is supposed to be concentrated there.

The rotational motion of a rigid body can be about a line or axis fixed in the reference frame being
referred to as the axis of rotation of the body. A given point in the body thus moves in a plane
perpendicular to this axis of rotation, called the plane of rotation and the rotation is referred to as
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rotation in two dimensions.

Let us consider a rigid body free to rotate about the axis 2\

0OZ through O, with the axis fixed in an inertial reference Q_j
frame. All the particles of the body describe circles about
the axis of rotation (OZ) in a plane perpendicular to it
and have their centres lying on it, with their radii equal
to their respective perpendicular distances from it and
the radius of each obviously sweeps through the same
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angle 80, say, in the same time §t.

Thus, for example, particles P1 and P2, with position
vector r; and 7, with respect to origin O and
distance 1y, and 73, from the axis, describe circles of
radii 1,1 and 1, with their centres respectively. X

The angular velocity of both P1 and P2, and in fact of all the particles, and hence of the body, as a
56
st
accordance with the right hand thumb rule) is along the axis of rotation (or the Z-axis), upward, if the
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whole, is thus the same, viz., @ = which, in the limit 6t = 0 gives w = %, the direction of which (in
rotation of the body is anticlockwise about the axis. This is indicated in the figure by the thick-arrow, the
length of which is proportional to the magnitude of w. It merely
represents conventionally the angular velocity of the rotational
motion that is taking place in the plane perpendicular to the x — vy
plane, in this case shown.
dw

The angular acceleration of the body is given by a = The

linear speed of a particle P is given by v = wr (i.e., its angular

velocity x radius of the circle in which it rotates), where v and w




are respectively the magnitudes of the linear speed and the angular velocity.

If 7 is the position vector of a particle P of a rigid body (as shown in fig. 2 ) with respect to the origin O, it
rotates about the axis in a circle of radius r,, = rsin £POA = 7 sin 6, where 0 is the angle that the

position vector 7 makes with the axis. So that, v = wr siné.

And therefore, linear velocity vector ¥ = @ X 7, points in a direction is tangential to the circular path at
P and perpendicular to the position vector 7, as shown.

In this chapter, we will restrict ourselves with only this plane rotational motion of a rigid body and the
study of its relationship with the properties of the body or the causes of its rotation, i.e., the rotational
dynamics of the rigid body.

Some Concepts related to Rotational motion

1. Torque

In case of the translational motion, we need to know only the magnitude of the force applied for linear
acceleration. In case of the rotational motion, for angular acceleration, we must know the actual point
of application of the force and the way it is directed, or, in other words, the moment of the force or the
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If F' is the force acting on a particle P of a rigid body (shown in fig3), < 1>
the moment of the force about the origin O in an inertial reference

‘Torque’.

frame, or the torque t acting on the particle, with respect to O, is

=t

F x 7p, Where 75 is the perpendicular distance between the line of
action of the force and the origin O (or the axis passing through O)

also known as the moment arm. If #is the position vector of the

particle at P with respect to O, we have r, = r sin @, where ¢ is

the angle between F and 7. The magnitude of the torque acting on
the particle is Fr sin ¢. Vectorially,

T=7XF P

The direction of the torque is as shown, given by the right-handed thumb rule, according to which if we
curl the fingers of our right hand in the direction in which # must be swung to move the position of F ,
through the smaller angle between them, the extended thumb gives the direction or the sense of the
vector 7. If 7= 0, i.e., the point P lies at the origin O, the torque is zero. In other words, the torque
about the origin itself is zero. From the relation, it is clear that only the component of F perpendicular
to 7 is responsible for the torque.



For a rigid body consisting of a large number of particles, the torque can be written as,
?=Y%@FxF)

The torque has the same dimensions as work (both being force times distance), viz., ML?T2. The two
are, however, entirely different physical quantities; whereas work is a scalar quantity, torque is a vector.

2. Angular momentum

Angular momentum, in rotational motion, is the analogue of linear momentum, in translational motion,
and is defined as the moment of linear momentum.

The linear momentum for a particle of mass m, moving with velocity ¥ is given by p = mv and for a
system of particles or a rigid body, by P= Mv,,,, , where M is the mass of the whole system or body
and v, is the velocity of its centre of mass. Therefore, considering a particle of a rigid body, free to
turn about the fixed axis OZ through O, if its linear momentum p be directed as shown, similar to the
point of action of the force F , such that it makes 2 with its position vector # (with respect to the origin
0) in an inertial frame of reference, its angular momentum will be given by

L=7Xp=7XxXmv

It is a vector quantity whose magnitude is L = pr sin ¢, and its direction is given by the right-hand thumb
rule for the vector product of the two vectors as in the case of torque discussed above. It is
perpendicular to the plane containing 7 and p. From the relation, it is clear that, similar to the case of
torque, only the component of p perpendicular to 7 is responsible for the angular momentum.

For a rigid body consisting of a large number of particles, the angular momentum can be written as,
L=YFxp)=X(mfxv).

Differentiating the above relation of Z, we get
dr . d S TR S
E—ZTXE("W)—Z(TXF) =T,

where ¥ (7 X F_)> is the sum of the torques, or the total torque, due to all the external forces acting on
the system or the rigid body. The reason why we explicitly use the word external is that internal forces
all form collinear pairs of opposite forces (of action and reaction in accordance with Newton’s third law
of motion), having equal and opposite moments about the given point, so that their sum is zero and
they produce no effect. This relation is the fundamental equation of motion of a rigid body about a fixed
axis through a given point O and applies irrespective of whether the particles constituting the system are
in motion relative to each other or in fixed spatial relationship with each other, as in a rigid body.
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In the absence of external torque, pria il 0 which shows L is constant. Thus, in this case of rotational

motion, the law of conservation of angular momentum holds good. According to this rule, in the
absence of any external forces, the angular momentum of the rigid body remains constant.

3. Moment of Inertia

The inability of a body to change by itself its state of rest or uniform motion along a straight line
(Newton'’s first law of motion) is an inherent property of matter and is called inertia. The greater the
mass of the body, the greater the resistance offered by it to any change in its state of rest or linear
motion. Here mass is taken to be a measure of inertia for linear or translatory motion. In exactly the
same manner, a body free to rotate about an axis opposes any change in its state of rest or uniform
rotation. In other words, it possesses inertia for rotational motion, i.e., it opposes the torque applied to
it to change its state of rotation. Hence, the name moment of inertia given to it. It is also known as
rotational inertia.

The moment of inertia about a given axis plays the same part in rotational motion about that axis as the
mass of a body does in translational motion. In other words, moment of inertia, in rotational motion, is
the analogue of mass in linear or translational motion.

Mathematically, the moment of inertia of a particle about a given axis of rotation is defined as the
product of its mass and the square of its distance from the axis. Thus, moment of inertia of a particle, is

I = mr?

where r is the perpendicular distance of the particle from rotational
axis. Similarly, moment of inertia of a rigid body made up of a
number of particles (discrete distribution) can be expressed as ‘the
moment of inertia of a rigid body about a given axis of rotation as
the sum of the products of the masses of the various particles of
the body and the squares of their respective distances from the
axis’.

Thus, if r1, ry, r3 etc. be the perpendicular distances, from the axis,

of particles of respective masses m;, m;, ms, etc., (as shown in the

fig. 4) we have

1= 2 """."11-

I =mar? +mar? +marg? + ... =Ymr?=MK?,

where M is the total mass of the body, M = Ym and K is the effective distance of its particles from the
axis, called its radius of gyration about the axis of rotation.

In the case of a body which does not consist of separate, discrete particles but has a continuous and
homogeneous distribution of matter in it, the summation becomes an integration, the integral being
taken over the entire body. Thus, [ = fmrzdm = MK?, where dm is the mass of an infinitesimally
small element of the body at distance r from the axis.



4. Radius of Gyration

Radius of gyration of a body about a given axis is the perpendicular distance of a point from the axis,
where if whole mass of the body were concentrated, the body shall have the same moment of inertia as
it has with the actual distribution of mass.

When square of radius of gyration (K) is multiplied with the mass of the body (M), it gives the moment
of inertia (I) of the body about the given axis.

I

_ 2 _ |L
I =MK*“or K = ” b
From the formula of discrete distribution
I =mr? +mr? +mrs? +.+mr? =l + I, + I3 + ... B I

Thus, the total moment of Inertia of a number of particles about B o o
a given axis is equal to the sum of the moments of inertia of the
individual particles about that axis, where I is the total moment
of inertia of the bodies and I, I, I5 etc. their individual moments

of inertia about the given axis. Therefore, if a body has a
moment of inertia about a given axis equal to I, and a portion of
it, having a moment of inertia I’ about the same axis be removed
from it, the moments of inertia of the remaining part of the body about the given axis will be I — I'.

fm;=m, = mg = .. = m,then, I =m@? +1r% +1% +-+12)
From the definition of Radius of gyration,
I =MK? = m(@? +1r2 +1% +-+12)

= mnk? = m(rZ +r¢ +17 ++1r2)  [AsM=mn]

VK = T2Hri+ri4 A 1E
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Hence radius of gyration of a body about a given axis is equal to root mean square distance of the
constituent particles of the body from the given axis.

Radius of gyration depends on shape and size of the body, position and configuration of the axis of
rotation, distribution of mass of the body with respect to the axis of rotation but does not depend on
the mass of body. Its dimension is [V Olr 0]. Its S.I. unit is meter. It is a scalar quantity. Talking about
its significance, through this concept a real body (particularly irregular) is replaced by a point mass for
dealing its rotational motion. Clearly, therefore, a change in the position or inclination of the axis of
rotation of a body will bring about a change in the relative distances of its particles and hence in their
effective distance or the radius of gyration of the body about the axis.



5. Theorems of Moment of Inertia
5.1 Theorem of Parallel Axis or Steiner’s theorem

This theorem states that ‘the moment of inertia of a body about any axis is equal to its moment of
inertia about a parallel axis through its centre of mass, plus the product of the mass of the body and the
square of the distance between the two axes.’
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If I is the moment of inertia of a body about a given axis and I; be the moment of inertia of the body
about an axis parallel to given axis and passing through centre of mass of the body of mass M and R is
the perpendicular distance between the two axes, then

I =1I; + MR?
5.2 Theorem of Perpendicular Axis

This theorem states that ‘the moment of inertia of a plane lamina about an axis perpendicular to the
plane of the lamina is equal to the sum of the moments of inertia of the lamina about two mutually
perpendicular axes, in its own plane, and intersecting each other at the point where the perpendicular
axis passes through it’.

Z

If I, I, and I, are the moments of inertia about the three axes, i.e., X-,Y- and Z- axes respectively,

mutually perpendicular to each other, then,

I = I +1,,.



Moment of Inertia (M.l.) of various geometrical bodies
1. Moment of inertia of rectangular lamina

(i) about an axis through its centre and parallel to one side.

Y
Let ABCD be a rectangular lamina, of length [, breadth ) A C‘;“ﬁ e B
b and mass M and let YOY' be the axis through its i
centre O and parallel to the side AD or BC about which '
its moment of inertia is to be determined. b 0%

Let us consider an elemental rectangular strip of the
lamina, parallel to, and at a distance x from the axis.

The area of the element = dx X b.

!
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And, since the mass per unit area of the lamina =

M/(l X b), so the mass of the elemental strip will be

%

N
~
=
=

M M
— X dx X b =—Xdx.
Ixb l

Therefore, Moment of Inertia of the element about the axis YOY’' = %.dx. x?

The Moment of Inertia, (I) of the whole rectangular lamina is thus given by twice the integral of the
above expression between the limits x =0 and x = 1/2.

l

=0 (YPM 2y, = 2M (U2, _ﬂ[xjr M P mi
Therefore, I=2[""Zx?dx == [ x*dx =5 e T T
(ii) about an axis through one side

y
In this case, since the axis coincides with AD or BC, we c % e
integrate the expression for the M.I. of the element of A
length dx at distance x from the axis, i.e.,
(M/1) dx.x?, b 1!0
between the limitsx = 0at AD and x = [ at BC. So
that M.I. of the lamina about side AD or BC is given by
D! X

'M M[x3]" M2 v
I=f—x2dx=—— =—
o 1 [13], "3



(iii) About an axis passing through its centre and perpendicular to its plane

This case can be obtained by an applying the principle of Y
perpendicular axes to case (i) above, according to <45
which, M.I. of the lamina about an axis through O A

' B
and perpendicular to its plane = M.I. of the lamina I,
about an axis through O parallel to b + M.I. of the 0 |

1

lamina about an axis through O parallel to |, i.e., b \ \
MI? Mb? _M(lz+b2) \ v

BEVIMEY, 12 D= " >

(iv) About an axis passing through the mid-point of one side and perpendicular to its plane

In this case the axis passes through the mid-point of side AD or BC, say, and perpendicular to the plane
of the lamina, so that it is parallel to the axis through O (the c.m. of the lamina). This case can be
obtained by an applying the principle of parallel axes to case (iii) above. Therefore, the M.I. of the lamina
about this axis will be,

M@+ b +M(l>2
12

- 12+b2+12
- 12 4

1> b?
:M<§+E>

If the axis passes through the mid-point of AB or

DC, we, similarly, get

I_M(lz+b2)+M(b)2_M 12+b2+b2
B 12 2) 12 4

1>  b?
=M<E+?>

(v) About an axis passing through one of its corners and perpendicular to its plane

Let the axis pass through the corner D of the lamina. Since it is perpendicular to the plane of the lamina,
it is parallel to the axis through its centre of mass O in case (iii). Therefore, by the principle of parallel
axes, we have moment of inertia of the rectangular lamina about this axis through D given by



_ M(1%2+b?)
EY.
between the two axes, given by

I + Md?, where d is the distance

d?=(1/2)* + (b/2)? = (I + b?)/4.

Therefore,

_ M(12+b?) N M(1%2+b?)
T 12 4

!

> +b?+ 31> +3b%\  M(I* +b?)
12 - 3

2. Moment of inertia of circular lamina or disc
(i) About an axis through its centre and perpendicular to its plane

Let M be the mass of the disc and R, its radius, so that its v
mass per unit area is equal to M /mR?2. <l h>)

Considering a ring of the disc, of width dx at a distant x

from the axis passing through O and perpendicular to

L3
the plane of the disc as shown in fig., we have R/
Area of the ring = Circumference x Width = 2mx. dx

Mass of the ring
=(M/mR?) X 2mx.dx = 2 Mxdx/R>.

7 /
Therefore, its M.I. about the perpendicular axis through
0= 2szdx ¥2 = 2Mx23dx.
R R

The whole disc is supposed to be made up of such

concentric rings of radii ranging from O to R, therefore, the M.I. of the whole disc about the axis through
O and perpendicular to its plane, i.e., |, is obtained by integrating the above expression for the M.I. of
the ring, between the limits x =0 and x = R. Thus,

2

R2M 2M [x*]" 2MR* 1
, R*4 2

= —_ d=__
, 2V R2[4



(ii) About an axis along the diameter

In this case, due to symmetry, the M.I. of the disc
about one diameter is the same as about another.
So, if | be the M.l. of the disc about each of the R

perpendicular diameters XOX' and YOY’, (Fig. ), we /
use the principle of perpendicular axes, i.e., | + | =
M. I. of the disc about an axis through O and

perpendicular to its plane, i.e., 21 = MR?/2, which
gives | = MR?/4.

3. Moment of inertia of annular ring or annular disc
(i) About an axis through its centre and perpendicular to its plane

An annular disc is an ordinary disc, with a smaller
coaxial disc removed from it, leaving a concentric
circular hole in it, as shown in Fig.. If R and r are the
outer and inner radii of the disc and M, its mass, we
have mass per unit area of the disc = mass/area =
M/mt(R%-r?) .

The disc may be imagined to be made up of a number
of circular rings, with their radii ranging from r to R.

Considering one such ring of radius x and width dx, we

have face area of the ring = 2nix.dx and, therefore, its ,
mass = 2nx.dx.[M/mt(R?-r?)] = [2 Mx/(R?-r?)] dx. Y

The M.I. about the axis through O and perpendicular to

2Mx 2Mx3
dx.x? = X.
(R2-12) (R2-12)

its plane =

The M.I. of the whole annular disc i.e,, |, is, therefore, given by the integral of the above expression
between the limits x=rand x =R, i.e,,

_ (R 2Mx? _ _2M (R _ 3, 2M [x* R om [(R*=r¥)] _ M(R%4+72)
I'= fr (R2-12) x = (Rz—rz)fr xdx = (R2-72) [4]r - (Rz—rz)[ 4 ] - 2
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(ii) About an axis along the diameter

Due to symmetry, the M.l. of the annular disc

about one diameter is the same as about another,

say I|. Then according to the principle of

perpendicular axes, the sum of its moments of / R
inertia about two perpendicular diameters must be {

equal to its M.l. about the axis passing through its X Q '~ )Q,
centre (where the two diameters intersect) and

perpendicular to its plane, i.e., | + | = M(R?+r?)/2 =
21 = M(R? + r?)/2, which gives, | = M (R? + r?)/4.

\/ /
4. Moment of inertia of a solid cylinder

(i) About its own axis of cylindrical symmetry

A solid cylinder is just a thick circular disc or a number of thin circular discs (all of the same radius) piled
up one over the other, so that its axis of cylindrical symmetry is the same as the axis passing through the
centre of the thick disc (or the pile of thin discs) and perpendicular to its plane.

N v’

Therefore, M.I. of the solid cylinder about its axis of cylindrical symmetry, i.e., | = M.I. of the thick disc
(or the pile of thin discs) of the same mass and radius about the axis through its centre and
perpendicular to its plane.

or, | = MR?/2
(ii) About the axis through its centre and perpendicular to its axis of cylindrical symmetry

If R be the radius, | be the length and M, the mass of the solid cylinder, supposed to be uniform and of
homogeneous composition, we have its mass per unit length = M/I. Considering the cylinder to be made
up of a number of discs each of radius R, placed adjacent to each other, and considering one such disc of
thickness dx at a distance x from the centre O of the cylinder, (Fig. ), we have mass of the disc = (M/I) dx,
and radius = R.
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Therefore, M.I. of the disc about its diameter (AB) = %.dx.RT X

The M.I. about the parallel axis YOY' , passing through
the centre O of the cylinder and perpendicular to its axis
of cylindrical symmetry (or its length), according to the
principle of parallel axes,

M R M t

_ 7 o~ 2
=7 .dx. 2 + ; .dx. x

Therefore, the M.I. of the whole cylinder about this axis, @~ & ——— 4 + ——____ oo cooo y
i.e.,, | = twice the integral of the above expression !T
between the limitsx=0and x =1/2, i.e.,

!
z2(M R? M
I = Zf — . —dx + —x?dx
,\ T2 l

: !
2M [z (R? E
=— —dx + x?dx .
L J, \ 4 : 3
. :
2M sz x37 \T/
=Tz 3
0

_2M R2l+l3 oy R2+l2
1|8 24| 4 12

_2M[R2 1P

== 732 8x3

5. Moment of inertia of a hollow cylinder
(i) About its axis of cylindrical symmetry

Let R and r be the external and internal radii respectively of a hollow cylinder of length | and mass M,
(Fig.). Then, face-area of the cylinder = t(R? - r?) and its volume = r(R? - r?)l and, therefore, its mass per
unit volume = M/ rt(R? - r?)l. Considering the cylinder to be made up of a large number of thin, coaxial
cylinders, with their radii varying from r to R, and considering one such cylinder of radius x and thickness
dx, we have its face area = 2nix.dx and its volume = 2nixdx.| and hence its mass = 2rxdx.l x M/m(R? - r?) =
2Mxdx/( R% - r?).

< / >

Y/
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The M. I. about the axis of the cylinder = "D dx.x* = Ry X

Hence M. I. of the entire cylinder about its axis, i.e., |, is given by

(R o2mx? . 2M R (R*—rY)] M(R?*+71?)
=] (Rz—rz)dx_(Rz—rz)frxgdx_ —TZ)[ ] —rz)[ ] 2

(ii) About an axis passing through its centre and perpendicular to its own axis

Again, if R and r be the external and internal radii respectively of the hollow cylinder, |, its length and M,
its mass, we have mass per unit volume of the cylinder = M/rt(R? - r?)I. Considering the hollow cylinder to
be made up of a large number of annular discs, of external and internal radii R and r respectively, placed
adjacent to each other, and considering one such disc at a distance x from the axis YOY' passing through
the centre O of the cylinder and perpendicular to its own axis as shown in Fig.. We have surface area of
the disc = mt(R? - r?), its volume = rt(R? - r?) dx and, therefore, its mass = 1(R? - r?) dx x M/m(R? - r?)l =
Mdx/I.

< 112 -
Y A A :
dx
__Adis___ 97X N
o)
\ B !
Y >

2 2
The M. I. of the disc about its diameter (AB) = u dx-—(R :T )

Therefore, the M. I. about the parallel axis YOY' distant x from it, according to the principle of parallel
d (R2+r2)

4

axes, = + - dx x?

Therefore, M. I. of entire hollow cylinder about the axis YOY' is equal to twice the integral of the above
expression between the limits x=0and x =1/2, i.e.,

l

l l i

2(M (R?+71?) M 2M (z ((R?> +712) 2M[(R? +1r¥)x  x3]2

I = 2[ — ———dx +—x%dx | =— ——dx+x%dx | = —|——+ =
o \ ! 4 l L, 4 l 4 3

(R2+7) | I? (R2+7)l  B]  ((R*+72) 2
[ 2+8x3] [ +24]_M< 4 +E>



6. Moment of Inertia of a solid sphere
(i) About the diameter

In the fig. a section is illustrated, through the
centre, of a solid sphere of radius R and mass M,
whose moment of inertia is to be determined
about a diameter AB, say, whose value is the same
about any other diameter.

Since the volume of sphere = 41tR3/3, its mass per
unit volume (or density) = 3M/4nR3 .

Considering a thin circular slice of the sphere at a
distance x from its centre O and of thickness dx, we
have surface area of the slice (which is a disc of
radius VR? — x2 ) = (R? - x2) and its Volume = Area
x Thickness = m(R? - x?).dx and hence its mass =
volume x density = 1((R? - x?).dx x 3M/4nR? = 3M(R?
- x?) dx/4R3.

The M.I. of this slice or disc about AB (i.e., an axis passing through its centre and perpendicular to its
M(R?=x?) | RP=x? _ 3M(R2-x2)

2 8R3 dx

plane) = its mass x (radius)?/2 =

Therefore, M. I. of the whole sphere about its diameter (AB) is equal to twice the integral of the above
expression between the limits x=0and x =R, i.e,,

R3M(R2 _X.Z)Z
I = Zf
. 8R?

2X3M
dx = f (R? — x?)2. dx—4R3f (R* — 2R?x? + x*).dx

=1 R*x—2R*—+—| =05 (R*— SR+ R° X —— =z MR?

_3M x® xSR_3M( 2 .1 )_31\4 8RS 2
"~ 4R3 3 5], 3 5 " 4R37 15 5
(ii) About a tangent

A tangent drawn to the sphere at any point will clearly be parallel to any diameter of it (i.e., an axis
passing through its centre or centre or mass) and at a distance equal to the radius of the sphere, R, from
it. We therefore have, by the principle of parallel axes, moment of inertia of the sphere about a tangent,

2 7
I = gMR2 + MR? = gMR2



7. Moment of inertia of a spherical shell
(i) About its diameter

Let ABCD be the section through the centre O, of a
spherical shell of radius R and mass M, (Fig. ) whose
moment of inertia is to be determined about a diameter
AB, say, its value being obviously the same about any
other diameter. Then the surface area of the shell = 4nr?

A B
and, therefore, mass per unit area of the shell = M/4nR2. Ol‘
Considering a thin slice of the shell, lying between two
dx

planes EF and GH, perpendicular to the diameter AB at

|
1
|
distances x and x + dx respectively from its centre O. This |
slice is a ring of radius PE and width EG (and not PQ which !
is equal to dx, the distance between the two planes). D
Then the area of the ring = circumference x width = 2nPE

x EG and hence its mass = 2nPE x EG x M/4nR>2.

Let us join OE and OG and let £COE be equal to 8 and £LEOG = dB. Then, PE = OE cos £OEP =R cos 6,
because OE = R and £OEP = alternate 2COE = 0. Also OP = OE sin ZOEP = x =R sin 0

and .. dx/d6 =R cos 0. [as OP = x and OE =R].
= dx=RcosBd6=PE.dO and EG = OE.d6 = R.dO.
- mass of the ring = 2t PE x R d@ x M/4nR? = Mdx/2R. [as PE.dO = dx]

The M. I. of the ring about diameter AB of the shell (i.e., an axis passing through the centre of the ring
and perpendicular to its plane = mass x (radius)? = (Mdx/2R) (R? - x?), [because PE? = OE? - OP? = R% - x?]

Therefore, M.I. of the whole spherical shell about the diameter (AB) is equal to twice the integral of this
expression between the limits x=0and x =R, i.e.,

1—2fRM(R2 2)d —MfR(RZ e = M [rze 2] S M e B M 2 2
~“), 2R =R, FIETRTTTE TR 3|TR3° T
(ii) About a tangent

A tangent drawn to the sphere at any point will clearly be parallel to any diameter of it (i.e., an axis
passing through its centre or centre or mass) and at a distance equal to the radius of the sphere, R, from
it. By the principle of parallel axes, M.I. of the sphere about a tangent,

2 5
I = §MR2 + MR? = §MR2



8. Moment of inertia of a hollow sphere or a thick shell
(i) About its diameter

A hollow sphere (or a thick shell) is just a solid
sphere from the inside of which a small concentric
solid sphere has been removed. The M.I. of hollow
sphere about a diameter = M.I. of the solid sphere
minus M.l. of the smaller solid sphere removed
from it, both about the same diameter. Let R and r
be the external and internal radii of the hollow
sphere, i.e., the radius of the bigger solid sphere
and the smaller solid sphere (removed from it)
respectively. If p be the density of the material of
the given hollow sphere, then

Mass of the bigger sphere = gnR3p and

4
Mass of the smaller sphere = gnrg'p

Thus, mass of the hollow sphere, M =
3M

4 3_ .3 __ 3MmM
. (R r3)p, and therefore, p = R

M.I. of the bigger and the smaller spheres about a given diameter are respectively %(gnR3p) R? and
2(%3,) 2

(2wt}

Therefore. M.I. of the hollow sphere about the same diameter is given by

—2(4 p3, \p2 _2(% 3,),2_2% 5_,5y—8__ 3M (p5s 5y _ 2, (R°-r°
1_5(37TR 'D)R 5(37" p)r _5'37Tp(R r)_15n47r(R3—r3)(R r)_SM(R3—r3)

(ii) About a tangent

A tangent to the sphere at any point is parallel to any diameter (i.e., the axis passing through the centre
of mass) of the sphere and at a distance equal to its external radius R from it, then according to the
principle of parallel axes,

R5—15
R3—T3

M. I. of hollow sphere about a tangent, [ = EM ( ) + MR?



Kinetic energy of rotation
Speaking about kinetic energy of rotation, there are two cases:

1. Kinetic energy of a body rotating about an axis through its centre of mass (i.e., in the case of pure
rotation).

Let us consider a body of mass M, rotating with A
angular velocity w about an axis AB, passing
through its centre of mass, O (Fig. ), so that the
centre of mass has zero linear velocity. It is thus a

case of pure rotation. )
Then the body possesses kinetic energy in virtue of ¥
its motion of rotation which is, therefore, aptly x0O

called its kinetic energy of rotation. Let us obtain
an expression for it. Let us consider the rigid body
having large number of particles of masses mi, my,
ms...etc. at respective distances r, ry, rs...etc. from
the axis AB through O. Since their angular velocity
is the same (w), their linear velocities are
respectively riw = vi, rnw = vy, r3w = vs, ... etc. and B
hence their respective kinetic energies equal to

1 1 1 1 1 1
5"111712 = Emlrfwz; Emzvz2 = Emzrzzwz; Em3v32 = Em3r32w2; .. etc.
Therefore total K.E. of all the particles, i.e., the K.E. of the rigid body itself
= imr2w? + i mr2w? + imarZw? +
=mar 5 Ml 5 M3T3

1 1 1
= sz(mlrf + myrf +mgrf + L) = ;a)ZZmrz = EwZMKZ,

where Ymr? = MK?, with M, as the mass of the body and K, its radius of gyration about the axis of
rotation AB. Since MK? = |, the moment of inertia of the body about the axis AB.

Then the Kinetic Energy of rotation of the body about the axis AB through its centre of mass = %Iwz.

2. Kinetic energy of a rotating body whose centre of mass also has a linear velocity
(a) Case of a body rolling along a plane surface

Let us consider a body, like a circular disc, a cylinder, a sphere etc. (i.e., a body with a circular
symmetry), of mass M, radius R and with its centre of mass at O, (Fig.), rolling, without slipping,



along a plane or a level surface, such that it rotates clockwise and moves along the + x direction, as
indicated.

At any given instant, the point P, where the bod
y 8 : p ' y /D 2v
touches the surface, is at rest, so that an axis through

P, perpendicular to the plane of the paper is its
instantaneous axis of rotation and the linear R

velocities of its various particles are perpendicular to orH—» —
the lines joining them with the point of contact P,
their magnitudes being proportional to the lengths of

these lines, as shown by the directions and lengths of
the arrows at the various points. Thus, if the linear P
velocity of the centre of mass O (where PO = R) be v,

that of the particle at Q (where PQ = 2R) is 2v.

This means clearly that the particles have all the same angular velocity with respect to the point P
or that the body is rotating about the fixed axis through P with an angular velocity w, say, given by
v/R, where v is the linear velocity of the centre of mass. The motion of the body is thus equivalent
to one of pure rotation about the axis through P, with an angular velocity w. The whole of the
kinetic energy of the body is, therefore, the same as its kinetic energy of rotation about this axis and
hence equal to (1/2)lpw?, where Ip is the M. I. of the body about the axis through R. If Ic.m. is the M.I.
of the body about a parallel axis through its centre of mass, then according to the principle of
parallel axes, Ip = lIc.m. + MR

The K.E. of the rolling body =%(Ic_m. + MRY)w? = %Iclm_a)z +-MR%w? = %1&,,,_(02 +-Mv? (1)

where v is the linear speed of its centre of mass with respect to P. Here I.m. = MK?, where K is the radius
of gyration of the body about the axis through its centre of mass, and w = v/R.

2 2
Thus K.E. of the rolling body = %MK2 % + %Mv2 = %Mv2 (% + 1) (2)

In the above expression, one can see two terms on R.H.S, first one gives its K.E. of pure rotation about
the centre of mass, i.e., its K.E. when it is simply rotating with angular velocity w about the axis through
its centre of mass, without executing any
translational motion (i.e., with the linear

Q *tv= R Q +2v

velocity of its centre of mass being zero).
The second term gives its K. E. of pure
translation, i.e., its K.E. when it is simply
moving with linear velocity v (or the linear
speed of the centre of mass) without
performing any rotational motion (i.e., with



its angular velocity being zero).

Therefore, K. E. of a rolling body rotating with angular velocity w and moving with linear velocity v (= Rw)
= its K. E. of pure rotation (with the same angular velocity w) about its centre of mass + its K. E. of pure
translation, with its centre of mass moving with linear velocity v.

This can be applied to all bodies, rolling or otherwise, which are

simultaneously executing a translational motion and a rotational Q v

motion about an axis perpendicular to their planes of motion.

Three figures beside reveal interesting aspects. Fig. represents the

rotation of the body about the fixed axis through the point of

contact P, where the linear velocity of the particle at P is zero, that

of the centre of mass, + v along the + x direction and that of the

particle at Q, + 2v in the + x direction. Fig. represents the pure

rotation of the body about the axis through its centre of mass O, +v =R
when it is at rest, i.e., its linear velocity is zero, that of the particle

at P, - v = -wR along the -x direction and that of the particle at Q, + v = wR along the + x direction. Fig.
represents the pure translational motion of the body, with the linear velocity of the centre of mass O
equal to + v so that the linear velocities of all other particles at P, Q etc are also the same, i.e., + v.

(b) Case of a body rolling down an inclined plane - Its acceleration along the plane

Let a body of circular symmetry (e.g., a disc,
sphere, cylinder etc.,) of mass M, roll freely
down a plane inclined to the horizontal at an
angle 8, (Fig. ) and rough enough to prevent
slipping. If v be the linear velocity acquired by
the body on covering a distance S along the
plane, its vertical distance of descent = S sin 6.

Then the potential energy lost by the body = Mg.
S sin 6. This must be equal to the kinetic energy gained by the body, i.e., equal to its K. E. of rotation plus
its K. E. of translation.

The K. E. of rotation of the body =%1w2, where w is its angular velocity about a perpendicular axis

through its centre of mass, and its K. E. of translation = %MUZ, because its centre of mass has a linear

velocity v.

The total K.E. gained by the body = %I(u2 + %MUZ. Here | = MK?, where K is the radius of gyration of the

body about the axis through its centre of mass, and w = v/R.

2 2
Total K.E. gained by the body = %MK2 % + %Mv2 = %Mv2 (K— + 1)



Equating this gain of K. E. against the loss of P. E., we have

RZ
K2+R?

2
%MUZ(%+1)=MgSSin9=v2=2 g.S.sinf

Comparing this with the kinematic relation v2 = 2aS for a body starting from rest, we have acceleration
of the body along the plane,

2

. _ R in 6
l.e.,a= mg.Sln

i.e., the acceleration is proportional to R,/(K> + R,) for a given angle of inclination (8) of the plane.

Here it is clear that the greater the value of K, as compared with R, the smaller the acceleration of the
body rolling down along the plane and hence the greater the time taken by it in reaching the bottom of
the plane, and the acceleration, and hence the time of descent, is quite independent of the mass of the
body.

Special cases:
(i) Cylinder.

The moment of inertia of a cylinder about its axis of symmetry about which it rolls = %MR2 = MK?

K2 1 . . sin 6 sinf 2 .
= — = -. Hence, its acceleration, a = g = = g — =-gsinf
RZ 2 1452 145 3
R

(ii) Solid Sphere
The moment of inertia of a solid sphere about a diameter about which it rolls = %MR2 = MK?

K? 2 . . sin@ sin@ 5 .
= Z o Hence, its acceleration, a = g =9 = gsin o

K2 2
l+pz 1+3
(iii) Hollow sphere

The moment of inertia of a hollow sphere about a diameter about which it rolls = %MR2 = MK?

2 . . sin 6 sin @ 3 .
=== 3 Hence, its acceleration, a = gz 9807 - gsin 0

K2 2
l+pz 143



