
Unit IV - Dynamics of Rigid Bodies 

The dynamics of a rigid body deals with the study of the motion of an object that maintains its shape 

and does not deform under the influence of external forces. Unlike a system of particles, which can have 

individual particles with different positions and velocities, a rigid body is a single object with a fixed 

configuration. The dynamics of a rigid body is a fundamental topic in mechanics and has numerous 

applications in engineering, robotics, aerospace, and other fields. It provides a framework for analyzing 

the motion, stability, and behaviour of objects that can be approximated as rigid bodies.  

The dynamics of a rigid body is governed by Newton's laws of motion, similar to the dynamics of 

particles. Newton's laws can be extended to describe the translational and rotational motion of a rigid 

body. They relate the net force and net torque acting on a rigid body to its linear acceleration and 

angular acceleration, respectively. Dynamics of a rigid body involves the analysis of moments and 

torques. A moment is a measure of the tendency of a force to cause rotation about a particular axis. 

Torque is the rotational equivalent of force and is responsible for producing angular acceleration in a 

rigid body.  

A rigid body can undergo translational motion, where the entire body moves in a straight line without 

any rotation. In this case, all points of the rigid body have the same velocity and follow parallel paths. A 

rigid body can also undergo rotational motion, where it spins about a fixed axis. Each point of the body 

moves in a circular path centred on the axis of rotation. The motion of a rotating rigid body can be 

described in terms of angular displacement, angular velocity, and angular acceleration. In general, a rigid 

body can undergo both translation and rotation simultaneously. This combined motion is known as 

general motion. It involves a combination of linear motion of the centre of mass and rotational motion 

about an axis passing through the centre of mass.  The moment of inertia quantifies the resistance of a 

rigid body to rotational motion. It depends on the distribution of mass within the body relative to the 

axis of rotation. The larger the moment of inertia, the greater the resistance to changes in rotational 

motion. Conservation laws, such as the conservation of linear momentum and the conservation of 

angular momentum, play a crucial role in the dynamics of a rigid body.

 

 

 



Rigid body motion – Translational and Rotational motion 

A rigid body is defined as a solid body in which the particles are compactly arranged so that the inter-

particle distance is small and fixed and is not disturbed by any external forces applied. Such a body thus 

preserves its shape or configuration intact and does not bend, stretch or vibrate when in motion.  

A rigid body may either move bodily, i.e., as a whole, in any direction, or it may rotate in two or three 

dimensions. In the former case, it is said to execute a translatory motion and in the latter, a rotational 

motion. A body may also execute both translational and rotational motions simultaneously. We can 

imagine the translational motion of a rigid body to be that of one single point, i.e., its centre of mass, 

where the whole mass of the body is supposed to be concentrated there. 

The rotational motion of a rigid body can be about a line or axis fixed in the reference frame being 

referred to as the axis of rotation of the body. A given point in the body thus moves in a plane 

perpendicular to this axis of rotation, called the plane of rotation and the rotation is referred to as 

rotation in two dimensions.  

Let us consider a rigid body free to rotate about the axis 

OZ through O, with the axis fixed in an inertial reference 

frame. All the particles of the body describe circles about 

the axis of rotation (OZ) in a plane perpendicular to it 

and have their centres lying on it, with their radii equal 

to their respective perpendicular distances from it and 

the radius of each obviously sweeps through the same 

angle 𝛿𝜃, say, in the same time 𝛿𝑡. 

Thus, for example, particles 𝑃1 and 𝑃2, with position 

vector 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗  with respect to origin O and 

distance 𝑟𝑝1and 𝑟𝑝2  from the axis, describe circles of 

radii 𝑟𝑝1 and 𝑟𝑝2 with their centres respectively. 

The angular velocity of both 𝑃1 and 𝑃2, and in fact of all the particles, and hence of the body, as a 

whole, is thus the same, viz., 𝜔⃗⃗ =
𝛿𝜃⃗⃗ 

𝛿𝑡
 , which, in the limit δt → 0 gives 𝜔⃗⃗ =

𝑑𝜃⃗⃗ 

𝑑𝑡
 , the direction of which (in 

accordance with the right hand thumb rule) is along the axis of rotation (or the Z-axis), upward, if the 

rotation of the body is anticlockwise about the axis. This is indicated in the figure by the thick arrow, the 

length of which is proportional to the magnitude of ω. It merely 

represents conventionally the angular velocity of the rotational 

motion that is taking place in the plane perpendicular to the x — y 

plane, in this case shown.  

The angular acceleration of the body is given by 𝑎  =
𝑑𝜔⃗⃗⃗ 

𝑑𝑡
 . The 

linear speed of a particle P is given by 𝑣 = 𝜔𝑟 (i.e., its angular 

velocity × radius of the circle in which it rotates), where v and ω 

fig 1 

fig 2 



are respectively the magnitudes of the linear speed and the angular velocity. 

If 𝑟  is the position vector of a particle P of a rigid body (as shown in fig. 2 ) with respect to the origin O, it 

rotates about the axis in a circle of radius 𝑟𝑝  =  𝑟 𝑠𝑖𝑛 ∠𝑃𝑂𝐴 =  𝑟 𝑠𝑖𝑛 𝜃, where 𝜃 is the angle that the 

position vector 𝑟  makes with the axis. So that, 𝑣 =  𝜔𝑟 𝑠𝑖𝑛𝜃. 

And therefore, linear velocity vector 𝑣 = 𝜔⃗⃗ × 𝑟  , points in a direction is tangential to the circular path at 

P and perpendicular to the position vector 𝑟  , as shown. 

In this chapter, we will restrict ourselves with only this plane rotational motion of a rigid body and the 

study of its relationship with the properties of the body or the causes of its rotation, i.e., the rotational 

dynamics of the rigid body. 

 

Some Concepts related to Rotational motion 

1. Torque 

In case of the translational motion, we need to know only the magnitude of the force applied for linear 

acceleration. In case of the rotational motion, for angular acceleration, we must know the actual point 

of application of the force and the way it is directed, or, in other words, the moment of the force or the 

‘Torque’. 

If 𝐹  is the force acting on a particle P of a rigid body (shown in fig3), 

the moment of the force about the origin O in an inertial reference 

frame, or the torque τ acting on the particle, with respect to O, is 

𝐹 × 𝑟𝑃⃗⃗  ⃗, where 𝑟𝑃⃗⃗  ⃗ is the perpendicular distance between the line of 

action of the force and the origin O (or the axis passing through O) 

also known as the moment arm. If 𝑟  is the position vector of the 

particle at P with respect to O, we have 𝑟𝑝  =  𝑟 𝑠𝑖𝑛 𝜑, where φ is 

the angle between 𝐹  and 𝑟 . The magnitude of the torque acting on 

the particle is 𝐹𝑟 𝑠𝑖𝑛 𝜑. Vectorially, 

 𝜏 = 𝑟 × 𝐹   

The direction of the torque is as shown, given by the right-handed thumb rule, according to which if we 

curl the fingers of our right hand in the direction in which 𝑟  must be swung to move the position of 𝐹  , 

through the smaller angle between them, the extended thumb gives the direction or the sense of the 

vector 𝜏  . If 𝑟  = 0, i.e., the point P lies at the origin O, the torque is zero. In other words, the torque 

about the origin itself is zero. From the relation, it is clear that only the component of 𝐹  perpendicular 

to 𝑟  is responsible for the torque. 

 



For a rigid body consisting of a large number of particles, the torque can be written as, 

 𝜏 = ∑(𝑟 × 𝐹)⃗⃗⃗⃗  

The torque has the same dimensions as work (both being force times distance), viz., ML2T–2. The two 

are, however, entirely different physical quantities; whereas work is a scalar quantity, torque is a vector. 

2. Angular momentum 

Angular momentum, in rotational motion, is the analogue of linear momentum, in translational motion, 

and is defined as the moment of linear momentum. 

The linear momentum for a particle of mass m, moving with velocity 𝑣  is given by 𝑝 = 𝑚𝑣  and for a 

system of particles or a rigid body, by 𝑃⃗ = 𝑀𝑣𝑐.𝑚.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   , where M is the mass of the whole system or body 

and 𝑣𝑐.𝑚.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the velocity of its centre of mass. Therefore, considering a particle of a rigid body, free to 

turn about the fixed axis OZ through O, if its linear momentum 𝑝  be directed as shown, similar to the 

point of action of the force 𝐹  , such that it makes ∠φ with its position vector 𝑟  (with respect to the origin 

O) in an inertial frame of reference, its angular momentum will be given by 

𝐿⃗ = 𝑟 × 𝑝 = 𝑟 × 𝑚𝑣   

It is a vector quantity whose magnitude is L = pr sin φ, and its direction is given by the right-hand thumb 

rule for the vector product of the two vectors as in the case of torque discussed above. It is 

perpendicular to the plane containing 𝑟  and 𝑝 . From the relation, it is clear that, similar to the case of 

torque, only the component of 𝑝  perpendicular to 𝑟  is responsible for the angular momentum. 

For a rigid body consisting of a large number of particles, the angular momentum can be written as,  

𝐿⃗ = ∑(𝑟 × 𝑝)⃗⃗⃗⃗ = ∑(𝑚𝑟 × 𝑣)⃗⃗⃗⃗  . 

Differentiating the above relation of 𝐿⃗ , we get 

𝑑𝐿⃗ 

𝑑𝑡
= ∑𝑟 ×

𝑑

𝑑𝑡
(𝑚𝑣 ) = ∑(𝑟 × 𝐹)⃗⃗⃗⃗ = 𝜏  , 

where ∑(𝑟 × 𝐹)⃗⃗⃗⃗  is the sum of the torques, or the total torque, due to all the external forces acting on 

the system or the rigid body. The reason why we explicitly use the word external is that internal forces 

all form collinear pairs of opposite forces (of action and reaction in accordance with Newton’s third law 

of motion), having equal and opposite moments about the given point, so that their sum is zero and 

they produce no effect. This relation is the fundamental equation of motion of a rigid body about a fixed 

axis through a given point O and applies irrespective of whether the particles constituting the system are 

in motion relative to each other or in fixed spatial relationship with each other, as in a rigid body. 



In the absence of external torque, 
𝑑𝐿⃗ 

𝑑𝑡
= 𝜏 = 0 which shows 𝐿⃗  is constant. Thus, in this case of rotational 

motion, the law of conservation of angular momentum holds good. According to this rule, in the 

absence of any external forces, the angular momentum of the rigid body remains constant. 

3. Moment of Inertia 

The inability of a body to change by itself its state of rest or uniform motion along a straight line 

(Newton’s first law of motion) is an inherent property of matter and is called inertia. The greater the  

mass of the body, the greater the resistance offered by it to any change in its state of rest or linear 

motion. Here mass is taken to be a measure of inertia for linear or translatory motion. In exactly the 

same manner, a body free to rotate about an axis opposes any change in its state of rest or uniform 

rotation. In other words, it possesses inertia for rotational motion, i.e., it opposes the torque applied to 

it to change its state of rotation. Hence, the name moment of inertia given to it. It is also known as 

rotational inertia. 

The moment of inertia about a given axis plays the same part in rotational motion about that axis as the 

mass of a body does in translational motion. In other words, moment of inertia, in rotational motion, is 

the analogue of mass in linear or translational motion.  

Mathematically, the moment of inertia of a particle about a given axis of rotation is defined as the 

product of its mass and the square of its distance from the axis. Thus, moment of inertia of a particle, is 

    𝐼 = 𝑚𝑟2   

where r is the perpendicular distance of the particle from rotational 

axis. Similarly, moment of inertia of a rigid body made up of a 

number of particles (discrete distribution) can be expressed as ‘the 

moment of inertia of a rigid body about a given axis of rotation as 

the sum of the products of the masses of the various particles of 

the body and the squares of their respective distances from the 

axis’.  

Thus, if r1, r2, r3 etc. be the perpendicular distances, from the axis, 

of particles of respective masses m1, m2, m3, etc., (as shown in the 

fig. 4) we have  

I = m1r1
2 + m2r2

2 + m3r3
2 +  = ∑𝑚𝑟2= 

where M is the total mass of the body, 𝑀 = ∑𝑚 and 𝐾 is the effective distance of its particles from the 

axis, called its radius of gyration about the axis of rotation. 

In the case of a body which does not consist of separate, discrete particles but has a continuous and 

homogeneous distribution of matter in it, the summation becomes an integration, the integral being 

taken over the entire body. Thus, 𝐼 = ∫𝑚𝑟2𝑑𝑚 = 𝑀𝐾2 , where 𝑑𝑚 is the mass of an infinitesimally 

small element of the body at distance r from the axis. 



4. Radius of Gyration 

Radius of gyration of a body about a given axis is the perpendicular distance of a point from the axis, 

where if whole mass of the body were concentrated, the body shall have the same moment of inertia as 

it has with the actual distribution of mass. 

When square of radius of gyration (𝐾) is multiplied with the mass of the body (𝑀), it gives the moment 

of inertia (𝐼) of the body about the given axis. 

 𝐼 = 𝑀𝐾2 or 𝐾 = √
𝐼

𝑀
 

From the formula of discrete distribution 

I =mr1
2 +mr2

2 +mr3
2 +…+mrn

2 = I1 + I2 + I3 + … 

Thus, the total moment of Inertia of a number of particles about 

a given axis is equal to the sum of the moments of inertia of the 

individual particles about that axis, where 𝐼 is the total moment 

of inertia of the bodies and 𝐼1, 𝐼2, 𝐼3 etc. their individual moments 

of inertia about the given axis. Therefore, if a body has a 

moment of inertia about a given axis equal to 𝐼, and a portion of 

it, having a moment of inertia 𝐼′ about the same axis be removed 

from it, the moments of inertia of the remaining part of the body about the given axis will be 𝐼 − 𝐼′. 

If 𝑚1 = 𝑚2  =  𝑚3  =  …  =  𝑚, then, 𝐼 = 𝑚(𝑟1
2  + 𝑟2

2  + 𝑟3
2  + ⋯+ 𝑟𝑛

2) 

From the definition of Radius of gyration, 

𝐼 = 𝑀𝐾2  =  𝑚(𝑟1
2 + 𝑟2

2  + 𝑟3
2  + ⋯+ 𝑟𝑛

2) 

⟹  𝑚𝑛𝐾2  =  𝑚(𝑟1
2  + 𝑟2

2  + 𝑟3
2  + ⋯+ 𝑟𝑛

2) [As M = mn] 

∴ 𝐾 = √
𝑟1
2+𝑟2

2+𝑟3
2+ …+ 𝑟𝑛

2

𝑛
 

Hence radius of gyration of a body about a given axis is equal to root mean square distance of the 

constituent particles of the body from the given axis. 

Radius of gyration depends on shape and size of the body, position and configuration of the axis of 

rotation, distribution of mass of the body with respect to the axis of rotation but does not depend on 

the mass of body. Its dimension is [M 0 L1 T 0]. Its S.I. unit is meter. It is a scalar quantity. Talking about 

its significance, through this concept a real body (particularly irregular) is replaced by a point mass for 

dealing its rotational motion. Clearly, therefore, a change in the position or inclination of the axis of 

rotation of a body will bring about a change in the relative distances of its particles and hence in their 

effective distance or the radius of gyration of the body about the axis. 



5. Theorems of Moment of Inertia 

5.1 Theorem of Parallel Axis or Steiner’s theorem 

This theorem states that ‘the moment of inertia of a body about any axis is equal to its moment of 

inertia about a parallel axis through its centre of mass, plus the product of the mass of the body and the 

square of the distance between the two axes.’ 

 

If 𝐼 is the moment of inertia of a body about a given axis and 𝐼𝐺  be the moment of inertia of the body 

about an axis parallel to given axis and passing through centre of mass of the body of mass M and R is 

the perpendicular distance between the two axes, then 

     𝐼 =  𝐼𝐺  +  𝑀𝑅2 

5.2 Theorem of Perpendicular Axis 

This theorem states that ‘the moment of inertia of a plane lamina about an axis perpendicular to the 

plane of the lamina is equal to the sum of the moments of inertia of the lamina about two mutually 

perpendicular axes, in its own plane, and intersecting each other at the point where the perpendicular 

axis passes through it’.  

 

 

If 𝐼𝑥, 𝐼𝑦 and 𝐼𝑧 are the moments of inertia about the three axes, i.e., X-,Y- and Z- axes respectively, 

mutually perpendicular to each other, then,  

 𝐼𝑧  =  𝐼𝑥  +  𝐼𝑦 . 



Moment of Inertia (M.I.) of various geometrical bodies 

1. Moment of inertia of rectangular lamina 

(i) about an axis through its centre and parallel to one side. 

Let ABCD be a rectangular lamina, of length 𝑙, breadth 

𝑏 and mass 𝑀 and let 𝑌𝑂𝑌′  be the axis through its 

centre O and parallel to the side AD or BC about which 

its moment of inertia is to be determined.  

Let us consider an elemental rectangular strip of the 

lamina, parallel to, and at a distance 𝑥 from the axis. 

The area of the element =  𝑑𝑥 ×  𝑏.  

And, since the mass per unit area of the lamina =

 𝑀/(𝑙 ×  𝑏), so the mass of the elemental strip will be 
𝑀

𝑙×𝑏
× 𝑑𝑥 × 𝑏 =

𝑀

𝑙
× 𝑑𝑥. 

Therefore, Moment of Inertia of the element about the axis YOY’ =
𝑀

𝑙
. 𝑑𝑥. 𝑥2 

The Moment of Inertia, (I) of the whole rectangular lamina is thus given by twice the integral of the 

above expression between the limits x = 0 and x = l/2. 

Therefore, 𝐼 = 2 ∫
𝑀

𝑙
𝑥2𝑑𝑥

𝑙/2

0
=

2𝑀

𝑙
∫ 𝑥2𝑑𝑥

𝑙/2

0
=

2𝑀

𝑙
[
𝑥3

3
]
0

𝑙

2
=

2𝑀

𝑙
.
𝑙3

24
=

𝑀𝑙2

12
 

(ii) about an axis through one side 

In this case, since the axis coincides with AD or BC, we 

integrate the expression for the M.I. of the element of 

length 𝑑𝑥 at distance 𝑥 from the axis, i.e.,  

(𝑀/𝑙) 𝑑𝑥. 𝑥2,  

between the limits 𝑥 =  0 at AD and 𝑥 =  𝑙 at BC. So 

that M.I. of the lamina about side AD or BC is given by 

𝐼 = ∫
𝑀

𝑙
𝑥2𝑑𝑥

𝑙

0

=
𝑀

𝑙
[
𝑥3

3
]
0

𝑙

=
𝑀𝑙2

3
 

 

 

 



(iii) About an axis passing through its centre and perpendicular to its plane 

This case can be obtained by an applying the principle of 

perpendicular axes to case (i) above, according to 

which, M.I. of the lamina about an axis through O 

and perpendicular to its plane = M.I. of the lamina 

about an axis through O parallel to b + M.I. of the 

lamina about an axis through O parallel to l, i.e.,  

𝐼 =
𝑀𝑙2

12
+

𝑀𝑏2

12
=

𝑀(𝑙2 + 𝑏2)

12
 

 

 

(iv) About an axis passing through the mid-point of one side and perpendicular to its plane 

In this case the axis passes through the mid-point of side AD or BC, say, and perpendicular to the plane 

of the lamina, so that it is parallel to the axis through O (the c.m. of the lamina). This case can be 

obtained by an applying the principle of parallel axes to case (iii) above. Therefore, the M.I. of the lamina 

about this axis will be, 

𝐼 =
𝑀(𝑙2 + 𝑏2)

12
+ 𝑀 (

𝑙

2
)
2

 

= 𝑀 (
𝑙2 + 𝑏2

12
+

𝑙2

4
) 

= 𝑀 (
𝑙2

3
+

𝑏2

12
) 

If the axis passes through the mid-point of AB or 

DC, we, similarly, get 

𝐼 =
𝑀(𝑙2 + 𝑏2)

12
+ 𝑀 (

𝑏

2
)
2

= 𝑀 (
𝑙2 + 𝑏2

12
+

𝑏2

4
)

= 𝑀 (
𝑙2

12
+

𝑏2

3
) 

(v) About an axis passing through one of its corners and perpendicular to its plane 

Let the axis pass through the corner D of the lamina. Since it is perpendicular to the plane of the lamina, 

it is parallel to the axis through its centre of mass O in case (iii). Therefore, by the principle of parallel 

axes, we have moment of inertia of the rectangular lamina about this axis through D given by 



𝐼 =
𝑀(𝑙2+𝑏2)

12
+ 𝑀𝑑2 , where d is the distance 

between the two axes, given by  

d2 = (l/2)2 + (b/2)2 = (l2 + b2)/4. 

Therefore, 

 𝐼 =
𝑀(𝑙2+𝑏2)

12
+

𝑀(𝑙2+𝑏2)

4
 

= 𝑀 (
𝑙2 + 𝑏2 + 3𝑙2 + 3𝑏2

12
) =

𝑀(𝑙2 + 𝑏2)

3
 

 

2. Moment of inertia of circular lamina or disc 

(i) About an axis through its centre and perpendicular to its plane 

Let M be the mass of the disc and R, its radius, so that its 

mass per unit area is equal to 𝑀/𝜋𝑅2.  

Considering a ring of the disc, of width 𝑑𝑥 at a distant 𝑥 

from the axis passing through O and perpendicular to 

the plane of the disc as shown in fig., we have  

Area of the ring = Circumference × Width = 2𝜋𝑥. 𝑑𝑥 

Mass of the ring  

= (𝑀/𝜋𝑅2)  ×  2𝜋𝑥. 𝑑𝑥 =  2 𝑀𝑥𝑑𝑥/𝑅2. 

Therefore, its M.I. about the perpendicular axis through 

O =
2𝑀𝑥𝑑𝑥

𝑅2 𝑥2 =
2𝑀𝑥3𝑑𝑥

𝑅2  . 

The whole disc is supposed to be made up of such 

concentric rings of radii ranging from O to R, therefore, the M.I. of the whole disc about the axis through 

O and perpendicular to its plane, i.e., I, is obtained by integrating the above expression for the M.I. of 

the ring, between the limits x = 0 and x = R. Thus,  

𝐼 = ∫
2𝑀

𝑅2 𝑥3𝑑𝑥
𝑅

0

=
2𝑀

𝑅2 [
𝑥4

4
]
0

𝑅

=
2𝑀

𝑅2

𝑅4

4
=

1

2
𝑀𝑅2  

 

 

 



(ii) About an axis along the diameter 

In this case, due to symmetry, the M.I. of the disc 

about one diameter is the same as about another. 

So, if I be the M.I. of the disc about each of the 

perpendicular diameters XOX′ and YOY′, (Fig. ), we 

use the principle of perpendicular axes, i.e., I + I = 

M. I. of the disc about an axis through O and 

perpendicular to its plane, i.e., 2I = MR2/2, which 

gives I = MR2/4. 

 

 

 

3. Moment of inertia of annular ring or annular disc 

(i) About an axis through its centre and perpendicular to its plane  

An annular disc is an ordinary disc, with a smaller 

coaxial disc removed from it, leaving a concentric 

circular hole in it, as shown in Fig.. If R and r are the 

outer and inner radii of the disc and M, its mass, we 

have mass per unit area of the disc = mass/area = 

M/π(R2-r2) . 

The disc may be imagined to be made up of a number 

of circular rings, with their radii ranging from r to R. 

Considering one such ring of radius x and width dx, we 

have face area of the ring = 2πx.dx and, therefore, its 

mass = 2πx.dx.[M/π(R2-r2)] = [2 Mx/(R2-r2)] dx. 

The M.I. about the axis through O and perpendicular to 

its plane =
2𝑀𝑥 

(𝑅2−𝑟2)
𝑑𝑥. 𝑥2 =

2𝑀𝑥3

(𝑅2−𝑟2)
𝑑𝑥 . 

The M.I. of the whole annular disc i.e., I, is, therefore, given by the integral of the above expression 

between the limits x = r and x = R, i.e., 

𝐼 = ∫
2𝑀𝑥3

(𝑅2−𝑟2)
𝑑𝑥

𝑅

𝑟
=

2𝑀

(𝑅2−𝑟2)
∫ 𝑥3𝑑𝑥

𝑅

𝑟
=

2𝑀

(𝑅2−𝑟2)
[
𝑥4

4
]
𝑟

𝑅

=
2𝑀

(𝑅2−𝑟2)
[
(𝑅4−𝑟4)

4
] =

𝑀(𝑅2+𝑟2)

2
  

 

 



(ii) About an axis along the diameter 

Due to symmetry, the M.I. of the annular disc 

about one diameter is the same as about another, 

say I. Then according to the principle of 

perpendicular axes, the sum of its moments of 

inertia about two perpendicular diameters must be 

equal to its M.I. about the axis passing through its 

centre (where the two diameters intersect) and 

perpendicular to its plane, i.e., I + I = M(R2+r2)/2 ⟹ 

2I = M(R2 + r2)/2, which gives, I = M (R2 + r2)/4. 

 

 

4. Moment of inertia of a solid cylinder 

(i) About its own axis of cylindrical symmetry 

A solid cylinder is just a thick circular disc or a number of thin circular discs (all of the same radius) piled 

up one over the other, so that its axis of cylindrical symmetry is the same as the axis passing through the 

centre of the thick disc (or the pile of thin discs) and perpendicular to its plane. 

 

 

 

 

 

Therefore, M.I. of the solid cylinder about its axis of cylindrical symmetry, i.e., I = M.I. of the thick disc 

(or the pile of thin discs) of the same mass and radius about the axis through its centre and 

perpendicular to its plane. 

or,  I = MR2/2 

(ii) About the axis through its centre and perpendicular to its axis of cylindrical symmetry 

If R be the radius, l be the length and M, the mass of the solid cylinder, supposed to be uniform and of 

homogeneous composition, we have its mass per unit length = M/l. Considering the cylinder to be made 

up of a number of discs each of radius R, placed adjacent to each other, and considering one such disc of 

thickness dx at a distance x from the centre O of the cylinder, (Fig. ), we have mass of the disc = (M/l) dx, 

and radius = R. 



Therefore, M.I. of the disc about its diameter (AB) =
𝑀

𝑙
. 𝑑𝑥.

𝑅2

4
 

The M.I. about the parallel axis YOY′ , passing through 

the centre O of the cylinder and perpendicular to its axis 

of cylindrical symmetry (or its length), according to the 

principle of parallel axes, 

=
𝑀

𝑙
. 𝑑𝑥.

𝑅2

4
+

𝑀

𝑙
. 𝑑𝑥. 𝑥2 

Therefore, the M.I. of the whole cylinder about this axis, 

i.e., I = twice the integral of the above expression 

between the limits x = 0 and x = l/2, i.e., 

𝐼 = 2∫ (
𝑀

𝑙
.
𝑅2

4
𝑑𝑥 +

𝑀

𝑙
𝑥2𝑑𝑥)

𝑙
2

0

=
2𝑀

𝑙
∫ (

𝑅2

4
𝑑𝑥 + 𝑥2𝑑𝑥)

𝑙
2

0

=
2𝑀

𝑙
[
𝑅2𝑥

4
+

𝑥3

3
]
0

𝑙
2

 

⟹ 𝐼 =
2𝑀

𝑙
[
𝑅2

4
.
𝑙

2
+

𝑙3

8 × 3
] =

2𝑀

𝑙
[
𝑅2𝑙

8
+

𝑙3

24
] = 𝑀 (

𝑅2

4
+

𝑙2

12
) 

5. Moment of inertia of a hollow cylinder 

(i) About its axis of cylindrical symmetry 

Let R and r be the external and internal radii respectively of a hollow cylinder of length l and mass M, 

(Fig.). Then, face-area of the cylinder = π(R2 - r2) and its volume = π(R2 - r2)l and, therefore, its mass per 

unit volume = M/ π(R2 - r2)l. Considering the cylinder to be made up of a large number of thin, coaxial 

cylinders, with their radii varying from r to R, and considering one such cylinder of radius x and thickness 

dx, we have its face area = 2πx.dx and its volume = 2πxdx.l and hence its mass = 2πxdx.l × M/π(R2 - r2)l = 

2Mxdx/( R2 - r2). 

 

 

 

 

 



The M. I. about the axis of the cylinder =
2𝑀𝑥 

(𝑅2−𝑟2)
𝑑𝑥. 𝑥2 =

2𝑀𝑥3

(𝑅2−𝑟2)
𝑑𝑥 

Hence M. I. of the entire cylinder about its axis, i.e., I, is given by 

𝐼 = ∫
2𝑀𝑥3

(𝑅2 − 𝑟2)
𝑑𝑥

𝑅

𝑟

=
2𝑀

(𝑅2 − 𝑟2)
∫ 𝑥3𝑑𝑥

𝑅

𝑟

=
2𝑀

(𝑅2 − 𝑟2)
[
𝑥4

4
]
𝑟

𝑅

=
2𝑀

(𝑅2 − 𝑟2)
[
(𝑅4 − 𝑟4)

4
] =

𝑀(𝑅2 + 𝑟2)

2
 

(ii) About an axis passing through its centre and perpendicular to its own axis 

Again, if R and r be the external and internal radii respectively of the hollow cylinder, l, its length and M, 

its mass, we have mass per unit volume of the cylinder = M/π(R2 - r2)l. Considering the hollow cylinder to 

be made up of a large number of annular discs, of external and internal radii R and r respectively, placed 

adjacent to each other, and considering one such disc at a distance x from the axis YOY′ passing through 

the centre O of the cylinder and perpendicular to its own axis as shown in Fig.. We have surface area of 

the disc = π(R2 - r2), its volume = π(R2 - r2) dx and, therefore, its mass = π(R2 - r2) dx × M/π(R2 - r2)l = 

Mdx/l. 

 

 

 

 

 

 

 

The M. I. of the disc about its diameter (AB) =
𝑀

𝑙
. 𝑑𝑥.

(𝑅2+𝑟2)

4
 

Therefore, the M. I. about the parallel axis YOY′ distant x from it, according to the principle of parallel 

axes, =
𝑀

𝑙
. 𝑑𝑥.

(𝑅2+𝑟2)

4
+

𝑀

𝑙
𝑑𝑥. 𝑥2 

Therefore, M. I. of entire hollow cylinder about the axis YOY′ is equal to twice the integral of the above 

expression between the limits x = 0 and x = l/2, i.e., 

𝐼 = 2∫ (
𝑀

𝑙
.
(𝑅2 + 𝑟2)

4
𝑑𝑥 +

𝑀

𝑙
𝑥2𝑑𝑥)

𝑙
2

0

=
2𝑀

𝑙
∫ (

(𝑅2 + 𝑟2)

4
𝑑𝑥 + 𝑥2𝑑𝑥)

𝑙
2

0

=
2𝑀

𝑙
[
(𝑅2 + 𝑟2)𝑥

4
+

𝑥3

3
]
0

𝑙
2

 

⟹ 𝐼 =
2𝑀

𝑙
[
(𝑅2 + 𝑟2)

4
.
𝑙

2
+

𝑙3

8 × 3
] =

2𝑀

𝑙
[
(𝑅2 + 𝑟2)𝑙

8
+

𝑙3

24
] = 𝑀 (

(𝑅2 + 𝑟2)

4
+

𝑙2

12
) 



6. Moment of Inertia of a solid sphere 

(i) About the diameter 

In the fig. a section is illustrated, through the 

centre, of a solid sphere of radius R and mass M, 

whose moment of inertia is to be determined 

about a diameter AB, say, whose value is the same 

about any other diameter. 

Since the volume of sphere = 4πR3/3, its mass per 

unit volume (or density) = 3M/4πR3 . 

Considering a thin circular slice of the sphere at a 

distance x from its centre O and of thickness dx, we 

have surface area of the slice (which is a disc of 

radius √𝑅2 − 𝑥2 ) = π(R2 - x2) and its Volume = Area 

× Thickness = π(R2 - x2).dx and hence its mass = 

volume × density = π(R2 - x2).dx × 3M/4πR3 = 3M(R2 

- x2) dx/4R3. 

The M.I. of this slice or disc about AB (i.e., an axis passing through its centre and perpendicular to its 

plane) = its mass × (radius)2/2 =
3𝑀(𝑅2−𝑥2)

4𝑅3 𝑑𝑥.
𝑅2−𝑥2

2
=

3𝑀(𝑅2−𝑥2)
2

8𝑅3 𝑑𝑥 

Therefore, M. I. of the whole sphere about its diameter (AB) is equal to twice the integral of the above 

expression between the limits x = 0 and x = R, i.e.,  

𝐼 = 2∫
3𝑀(𝑅2 − 𝑥2)2

8𝑅3 𝑑𝑥
𝑅

0

=
2 × 3𝑀

8𝑅3 ∫ (𝑅2 − 𝑥2)2. 𝑑𝑥
𝑅

0

=
3

4

𝑀

𝑅3 ∫ (𝑅4 − 2𝑅2𝑥2 + 𝑥4). 𝑑𝑥
𝑅

0

  

⟹ 𝐼 =
3𝑀

4𝑅3 [𝑅4𝑥 − 2𝑅2
𝑥3

3
+

𝑥5

5
]
0

𝑅

=
3𝑀

4𝑅3 (𝑅5 −
2

3
𝑅5 +

1

5
𝑅5) =

3𝑀

4𝑅3 ×
8𝑅5

15
=

2

5
𝑀𝑅2 

(ii) About a tangent 

A tangent drawn to the sphere at any point will clearly be parallel to any diameter of it (i.e., an axis 

passing through its centre or centre or mass) and at a distance equal to the radius of the sphere, R, from 

it. We therefore have, by the principle of parallel axes, moment of inertia of the sphere about a tangent,  

𝐼 =
2

5
𝑀𝑅2 + 𝑀𝑅2 =

7

5
𝑀𝑅2 

 

 



 

7. Moment of inertia of a spherical shell 

(i) About its diameter 

Let ABCD be the section through the centre O, of a 

spherical shell of radius R and mass M, (Fig. ) whose 

moment of inertia is to be determined about a diameter 

AB, say, its value being obviously the same about any 

other diameter. Then the surface area of the shell = 4πr2 

and, therefore, mass per unit area of the shell = M/4πR2. 

Considering a thin slice of the shell, lying between two 

planes EF and GH, perpendicular to the diameter AB at 

distances x and x + dx respectively from its centre O. This 

slice is a ring of radius PE and width EG (and not PQ which 

is equal to dx, the distance between the two planes). 

Then the area of the ring = circumference × width = 2πPE 

× EG and hence its mass = 2πPE × EG × M/4πR2. 

Let us join OE and OG and let ∠COE be equal to θ and ∠EOG = dθ. Then, PE = OE cos ∠OEP = R cos θ, 

because OE = R and ∠OEP = alternate ∠COE = θ. Also OP = OE sin ∠OEP ⟹ x = R sin θ  

and ∴ dx/dθ = R cos θ. [as OP = x and OE = R]. 

⟹ dx = R cos θ d θ = PE. dθ and EG = OE.dθ = R.dθ. 

∴ mass of the ring = 2π PE × R dθ × M/4πR2 = Mdx/2R.  [as PE.dθ = dx] 

The M. I. of the ring about diameter AB of the shell (i.e., an axis passing through the centre of the ring 

and perpendicular to its plane = mass × (radius)2 = (Mdx/2R) (R2 - x2), [because PE2 = OE2 - OP2 = R2 - x2] 

Therefore, M.I. of the whole spherical shell about the diameter (AB) is equal to twice the integral of this 

expression between the limits x = 0 and x = R, i.e., 

𝐼 = 2∫
𝑀

2𝑅
(𝑅2 − 𝑥2)𝑑𝑥

𝑅

0

=
𝑀

𝑅
∫ (𝑅2 − 𝑥2)𝑑𝑥

𝑅

0

=
𝑀

𝑅
[𝑅2𝑥 −

𝑥3

3
]
0

𝑅

=
𝑀

𝑅
[𝑅3 −

𝑅3

3
] =

𝑀

𝑅
.
2

3
𝑅3 =

2

3
𝑀𝑅2 

(ii) About a tangent 

A tangent drawn to the sphere at any point will clearly be parallel to any diameter of it (i.e., an axis 

passing through its centre or centre or mass) and at a distance equal to the radius of the sphere, R, from 

it. By the principle of parallel axes, M.I. of the sphere about a tangent,  

𝐼 =
2

3
𝑀𝑅2 + 𝑀𝑅2 =

5

3
𝑀𝑅2 



8. Moment of inertia of a hollow sphere or a thick shell 

(i) About its diameter 

A hollow sphere (or a thick shell) is just a solid 

sphere from the inside of which a small concentric 

solid sphere has been removed. The M.I. of hollow 

sphere about a diameter = M.I. of the solid sphere 

minus M.I. of the smaller solid sphere removed 

from it, both about the same diameter. Let R and r 

be the external and internal radii of the hollow 

sphere, i.e., the radius of the bigger solid sphere 

and the smaller solid sphere (removed from it) 

respectively. If ρ be the density of the material of 

the given hollow sphere, then 

Mass of the bigger sphere =
4

3
𝜋𝑅3𝜌 and  

Mass of the smaller sphere =
4

3
𝜋𝑟3𝜌 

Thus, mass of the hollow sphere, 𝑀 =
4

3
𝜋(𝑅3 − 𝑟3)𝜌 , and therefore, 𝜌 =

3𝑀

4𝜋(𝑅3−𝑟3)
 

M.I. of the bigger and the smaller spheres about a given diameter are respectively 
2

5
(
4

3
𝜋𝑅3𝜌)𝑅2 and 

2

5
(
4

3
𝜋𝑟3𝜌)𝑟2. 

Therefore. M.I. of the hollow sphere about the same diameter is given by  

𝐼 =  
2

5
(
4

3
𝜋𝑅3𝜌)𝑅2 −

2

5
(
4

3
𝜋𝑟3𝜌) 𝑟2 =

2

5
.
4

3
𝜋𝜌(𝑅5 − 𝑟5) =

8

15
𝜋

3𝑀

4𝜋(𝑅3−𝑟3)
(𝑅5 − 𝑟5) =

2

5
𝑀 (

𝑅5−𝑟5

𝑅3−𝑟3)  

(ii) About a tangent 

A tangent to the sphere at any point is parallel to any diameter (i.e., the axis passing through the centre 

of mass) of the sphere and at a distance equal to its external radius R from it, then according to the 

principle of parallel axes, 

M. I. of hollow sphere about a tangent, 𝐼 =
2

5
𝑀 (

𝑅5−𝑟5

𝑅3−𝑟3) + 𝑀𝑅2 

 

 

 



Kinetic energy of rotation 

Speaking about kinetic energy of rotation, there are two cases: 

1. Kinetic energy of a body rotating about an axis through its centre of mass (i.e., in the case of pure 

rotation).  

Let us consider a body of mass M, rotating with 

angular velocity ω about an axis AB, passing 

through its centre of mass, O (Fig. ), so that the 

centre of mass has zero linear velocity. It is thus a 

case of pure rotation. 

Then the body possesses kinetic energy in virtue of 

its motion of rotation which is, therefore, aptly 

called its kinetic energy of rotation. Let us obtain 

an expression for it. Let us consider the rigid body 

having large number of particles of masses m1, m2, 

m3...etc. at respective distances r1, r2, r3...etc. from 

the axis AB through O. Since their angular velocity 

is the same (ω), their linear velocities are 

respectively r1ω = v1, r2ω = v2, r3ω = v3 , ... etc. and 

hence their respective kinetic energies equal to 
1

2
𝑚1𝑣1

2 =
1

2
𝑚1𝑟1

2𝜔2;  
1

2
𝑚2𝑣2

2 =
1

2
𝑚2𝑟2

2𝜔2;  
1

2
𝑚3𝑣3

2 =
1

2
𝑚3𝑟3

2𝜔2; … etc. 

Therefore total K.E. of all the particles, i.e., the K.E. of the rigid body itself 

  =
1

2
𝑚1𝑟1

2𝜔2 +
1

2
𝑚2𝑟2

2𝜔2 +
1

2
𝑚3𝑟3

2𝜔2 + ⋯ 

=
1

2
𝜔2(𝑚1𝑟1

2 + 𝑚2𝑟2
2 + 𝑚3𝑟3

2 + … ) =
1

2
𝜔2∑𝑚𝑟2 =

1

2
𝜔2𝑀𝐾2, 

where ∑𝑚𝑟2 = 𝑀𝐾2, with M, as the mass of the body and K, its radius of gyration about the axis of 

rotation AB. Since MK2 = I, the moment of inertia of the body about the axis AB. 

Then the Kinetic Energy of rotation of the body about the axis AB through its centre of mass = 
1

2
𝐼𝜔2.  

2. Kinetic energy of a rotating body whose centre of mass also has a linear velocity  

(a) Case of a body rolling along a plane surface 

Let us consider a body, like a circular disc, a cylinder, a sphere etc. (i.e., a body with a circular 

symmetry), of mass M, radius R and with its centre of mass at O, (Fig.), rolling, without slipping, 



along a plane or a level surface, such that it rotates clockwise and moves along the + x direction, as 

indicated. 

At any given instant, the point P, where the body 

touches the surface, is at rest, so that an axis through 

P, perpendicular to the plane of the paper is its 

instantaneous axis of rotation and the linear 

velocities of its various particles are perpendicular to 

the lines joining them with the point of contact P, 

their magnitudes being proportional to the lengths of 

these lines, as shown by the directions and lengths of 

the arrows at the various points. Thus, if the linear 

velocity of the centre of mass O (where PO = R) be v, 

that of the particle at Q (where PQ = 2R) is 2v. 

This means clearly that the particles have all the same angular velocity with respect to the point P 

or that the body is rotating about the fixed axis through P with an angular velocity ω, say, given by 

v/R, where v is the linear velocity of the centre of mass. The motion of the body is thus equivalent 

to one of pure rotation about the axis through P, with an angular velocity ω. The whole of the 

kinetic energy of the body is, therefore, the same as its kinetic energy of rotation about this axis and 

hence equal to (1/2)IPω2, where IP is the M. I. of the body about the axis through R. If Ic.m. is the M.I. 

of the body about a parallel axis through its centre of mass, then according to the principle of 

parallel axes, IP = Ic.m. + MR2.  

The K.E. of the rolling body = 
1

2
(𝐼𝑐.𝑚. + 𝑀𝑅2)𝜔2 =

1

2
𝐼𝑐.𝑚.𝜔

2 +
1

2
𝑀𝑅2𝜔2 =

1

2
𝐼𝑐.𝑚.𝜔

2 +
1

2
𝑀𝑣2   (1) 

where v is the linear speed of its centre of mass with respect to P. Here Ic.m. = MK2, where K is the radius 

of gyration of the body about the axis through its centre of mass, and ω = v/R.  

Thus K.E. of the rolling body =
1

2
𝑀𝐾2 𝑣2

𝑅2  +
1

2
𝑀𝑣2 =

1

2
𝑀𝑣2 (

𝐾2

𝑅2 + 1)    (2) 

In the above expression, one can see two terms on R.H.S, first one gives its K.E. of pure rotation about 

the centre of mass, i.e., its K.E. when it is simply rotating with angular velocity ω about the axis through 

its centre of mass, without executing any 

translational motion (i.e., with the linear 

velocity of its centre of mass being zero). 

The second term gives its K. E. of pure 

translation, i.e., its K.E. when it is simply 

moving with linear velocity v (or the linear 

speed of the centre of mass) without 

performing any rotational motion (i.e., with 



its angular velocity being zero).  

Therefore, K. E. of a rolling body rotating with angular velocity ω and moving with linear velocity v (= Rω) 

= its K. E. of pure rotation (with the same angular velocity ω) about its centre of mass + its K. E. of pure 

translation, with its centre of mass moving with linear velocity v. 

This can be applied to all bodies, rolling or otherwise, which are 

simultaneously executing a translational motion and a rotational 

motion about an axis perpendicular to their planes of motion. 

Three figures beside reveal interesting aspects. Fig.  represents the 

rotation of the body about the fixed axis through the point of 

contact P, where the linear velocity of the particle at P is zero, that 

of the centre of mass, + v along the + x direction and that of the 

particle at Q, + 2v in the + x direction. Fig. represents the pure 

rotation of the body about the axis through its centre of mass O, 

when it is at rest, i.e., its linear velocity is zero, that of the particle 

at P, - v = -ωR along the -x direction and that of the particle at Q, + v = ωR along the + x direction. Fig. 

represents the pure translational motion of the body, with the linear velocity of the centre of mass O 

equal to + v so that the linear velocities of all other particles at P, Q etc are also the same, i.e., + v. 

(b) Case of a body rolling down an inclined plane - Its acceleration along the plane 

Let a body of circular symmetry (e.g., a disc, 

sphere, cylinder etc.,) of mass M, roll freely 

down a plane inclined to the horizontal at an 

angle θ, (Fig. ) and rough enough to prevent 

slipping. If v be the linear velocity acquired by 

the body on covering a distance S along the 

plane, its vertical distance of descent = S sin θ. 

Then the potential energy lost by the body = Mg. 

S sin θ. This must be equal to the kinetic energy gained by the body, i.e., equal to its K. E. of rotation plus 

its K. E. of translation. 

The K. E. of rotation of the body = 
1

2
𝐼𝜔2, where ω is its angular velocity about a perpendicular axis 

through its centre of mass, and its K. E. of translation = 
1

2
𝑀𝑣2, because its centre of mass has a linear 

velocity v. 

The total K.E. gained by the body = 
1

2
𝐼𝜔2 +

1

2
𝑀𝑣2. Here I = MK2, where K is the radius of gyration of the 

body about the axis through its centre of mass, and ω = v/R.  

Total K.E. gained by the body =
1

2
𝑀𝐾2 𝑣2

𝑅2  +
1

2
𝑀𝑣2 =

1

2
𝑀𝑣2 (

𝐾2

𝑅2 + 1) 



Equating this gain of K. E. against the loss of P. E., we have 

 
1

2
𝑀𝑣2 (

𝐾2

𝑅2 + 1) = 𝑀𝑔 𝑆 sin 𝜃 ⟹ 𝑣2 = 2
𝑅2

𝐾2+𝑅2 𝑔. 𝑆. sin 𝜃 

Comparing this with the kinematic relation v2 = 2aS for a body starting from rest, we have acceleration 

of the body along the plane, 

i.e., 𝑎 =
𝑅2

𝐾2+𝑅2 𝑔. sin 𝜃 

i.e., the acceleration is proportional to R2/(K2 + R2) for a given angle of inclination (θ) of the plane. 

Here it is clear that the greater the value of K, as compared with R, the smaller the acceleration of the 

body rolling down along the plane and hence the greater the time taken by it in reaching the bottom of 

the plane, and the acceleration, and hence the time of descent, is quite independent of the mass of the 

body. 

Special cases: 

(i) Cylinder. 

The moment of inertia of a cylinder about its axis of symmetry about which it rolls = 
1

2
𝑀𝑅2 = 𝑀𝐾2 

⟹ 
𝐾2

𝑅2 =
1

2
. Hence, its acceleration, 𝑎 =

𝑔 sin𝜃

1+
𝐾2

𝑅2

=
𝑔 sin𝜃

1+
1

2

=
2

3
 𝑔 sin 𝜃 

(ii) Solid Sphere 

The moment of inertia of a solid sphere about a diameter about which it rolls = 
2

5
𝑀𝑅2 = 𝑀𝐾2   

⟹ 
𝐾2

𝑅2 =
2

5
. Hence, its acceleration, 𝑎 =

𝑔 sin𝜃

1+
𝐾2

𝑅2

=
𝑔 sin𝜃

1+
2

5

=
5

7
 𝑔 sin 𝜃 

(iii) Hollow sphere 

The moment of inertia of a hollow sphere about a diameter about which it rolls = 
2

3
𝑀𝑅2 = 𝑀𝐾2 

⟹ 
𝐾2

𝑅2 =
2

3
. Hence, its acceleration, 𝑎 =

𝑔 sin𝜃

1+
𝐾2

𝑅2

=
𝑔 sin𝜃

1+
2

3

=
3

5
 𝑔 sin 𝜃 

 


